Skip to main content
Log in

Superconductivity and Structure

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The degree of the isolation of the CuO2 planes (e.g. distance or bond valence to the apical coordination) has been shown by quantitative algorithms to be the major factor in determining aspects of the doping curves. They include the magnitude of the optimal number of doped holes (hop) and the corresponding T cop. It is shown that the roots of these phenomenological laws lie in a related structural dependence of super-exchange. The latter is expressed in the pseudo-gap or Neel temperature of the undoped parent compound. A fruitful language can be developed which deals with a buildup of complex quantum chemical features by bringing two holes into vicinity of a super-exchange O, forming a “local” Cu2O7 pair. Structural considerations also dictate that stress is relieved by alternate orthogonal pair orientation. This leads to plaid patterns with primary and secondary channels of charge. The presence of these two types of charge channels is involved in the mechanism of superconducting charge transport. Similar structuring of doped charge into plaid patterns of “local” pairs has been proposed for “all” high T c superconductivity. STM now gives pictorial representation of the remnants of such an electronic crystal structure. The response of these bond-ordering motifs to structural details is further discussed. These ideas supply organization to the manifold experimental situation and provide opportunities for a unifying theory for high T c superconductivity in terms of real space structuring of “local” pairs, largely on crystal-chemical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Bishop, Curr. Opin. Solid State Mater. Sci. 2, 244 (1997).

    Article  MathSciNet  Google Scholar 

  2. J. B. Goodenough and J. S. Zhou, Struct. Bond. 98, 17 (2001); J. B. Goodenough, Europhys. Lett. 57, 550 (2002).

    Article  Google Scholar 

  3. C. Park and R. L. Snyder, J. Am. Ceram. Soc. 78, 3171 (1995).

    Article  Google Scholar 

  4. J. E. Hoffman, E. W. Hudson, K. M. Lang, V. V. Madharan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).

    Article  ADS  Google Scholar 

  5. H. A. Mook, P. Dai, and F. Dogan, Phys. Rev. Lett. 88, 97004 (2002).

    Article  ADS  Google Scholar 

  6. T. Hanagurii, Nature 430, 1001 (2004).

    Article  ADS  Google Scholar 

  7. K. M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, and Z.-X. Shen, Science 307, 901–904 (2005).

    Article  ADS  Google Scholar 

  8. Y. Zhang, E. Demler, and S. Sachdov, Phys. Rev. B 66, 94501 (2002).

    Article  ADS  Google Scholar 

  9. J. Zhu, I. Martin, and R. A. Bishop, Phys. Rev. Lett. 89, 67003 (2002).

    Article  ADS  Google Scholar 

  10. M. Voita, Phys. Rev. B 66, 104505 (2002).

    Article  ADS  Google Scholar 

  11. H. Oesterreicher, J. Low Temp. Phys. 177, 993 (1999).

    Article  Google Scholar 

  12. H. Oesterreicher, J. Solid State Chem. 158, 139 (2001).

    Article  ADS  Google Scholar 

  13. H. Oesterreicher, J. Superconductivity 16, 507 (2003).

    Article  Google Scholar 

  14. H. Oesterreicher, J. Superconductivity 17, 439 (2004).

    Article  Google Scholar 

  15. J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  16. H. Kotegawa, Y. Tokunaga, K. Ishida, G.-Q. Zhang, Y. Kitaoka, H. Kito, A. Iyo, K. Tokiwa, T. Watanabe, and H. Ihara, Phys. Rev. B 64, 064515 (2001).

    Article  ADS  Google Scholar 

  17. H. A. Mook, P. Dai, S. M. Hayden, G. Aeppli, T. G. Perring, and F. Do, Nature 395, 580–582 (1998).

    Article  ADS  Google Scholar 

  18. B. O. Wells, Science 277, 1067 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Oesterreicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oesterreicher, H. Superconductivity and Structure. J Supercond 20, 201–213 (2007). https://doi.org/10.1007/s10948-006-0137-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-006-0137-z

Keywords

Navigation