Skip to main content
Log in

Microwave and Terahertz Surface Resistance of MgB2 Thin Films

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The knowledge of the surface resistance R s of superconducting thin film at microwave and terahertz (THz) regions is significant to design, make and assess superconducting microwave and THz electronic devices. In this paper we reported the R s of MgB2 films at microwave and THz measured with sapphire resonator technique and the time-domain THz spectroscopy, respectively. Some interesting results are revealed in the following: (1) A clear correlation is found between R s and normal-state resistivity right above T c, ρ0, i.e., R s decreases almost linearly with the decrease of ρ0. (2) A low residual R s, less than 50 μΩ at 18 GHz is achieved by different deposition techniques. In addition, between 10 and 14 K, MgB2 has the lowest R s compared with two other superconductors Nb3Sn and the high-temperature superconductor YBa2Cu3O7−δ(YBCO). (3) From THz measurement it is found that the R s of MgB2 up to around 1 THz is lower than that of copper and YBCO at the temperature below 25 K. (4) The frequency dependence of R s follows ωn, where ω is angular frequency, and n is power index. However, n changes from 1.9 at microwave to 1.5 at THz. The above results clearly give the evidences that MgB2 thin film, compared with other superconductors, is of advantage to make superconducting circuits working in the microwave and THz regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).

    Article  ADS  Google Scholar 

  2. J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, Phys. Rev. Lett. 86, 4656 (2001).

    Article  ADS  Google Scholar 

  3. H. J. Choi, D. Roundy, Hong Sun, M. L. Cohen, S. G. Louie, Nature 758 (2002).

  4. I. I. Mazin, et al., Phys. Rev. Lett. 89, 107002 (2002).

    Article  ADS  Google Scholar 

  5. T. Dahm and N. Schopohl, Phys. Rev. Lett. 91, 017001 (2003).

    Article  ADS  Google Scholar 

  6. P. Szabo, et al., Phys. Rev. Lett. 87, 137005 (2001).

    Article  ADS  Google Scholar 

  7. H. Uchiyama, et al., Phys. Rev. Lett. 88, 157002 (2002).

    Article  ADS  Google Scholar 

  8. M. A. Hein, High-Temperature Superconductor Thin Films at Microwave Frequency, Vol. 155: Springer Tracts of Modern Physics (Springer, Heidelberg, 1999).

    Google Scholar 

  9. T. Van Duzer, and C. W. Tunner, Principle of Superconductive Devices and Circuits, Prentice Hall, Englewood Cliffs, NJ.

  10. N. Klein, Rep. Prog. Phys. 65, 1387 (2002).

    Article  ADS  Google Scholar 

  11. A. D. Semenov, G. N. Gol’tsman, and R. Sobolewski, Supercond. Sci. Technol. 15, R1 (2002).

    Article  ADS  Google Scholar 

  12. B. D. Jackson, T. M. Klapwijk, Physica C 372–376, 368 (2002).

    Article  Google Scholar 

  13. M. Hajenius, et al., Supercond. Sci. Technol. 17, S224 (2004).

    Article  ADS  Google Scholar 

  14. M. A. Hein, M. Getta, S. Kteiskott, B. Mönter, H. Piel, D. E. Oates, P. J. Hirst, R. G. Humphreys, H. N. Lee, and S. H. Moon, Physica C 372–376, 571 (2002).

    Article  Google Scholar 

  15. M. R. Eskildsen et. al., Phys. Rev. Lett. 89, 187003 (2002).

    Article  ADS  Google Scholar 

  16. B. B. Jin et. al., Supercond. Sci. Technol. 18, L1 (2005).

    Article  ADS  Google Scholar 

  17. B. B. Jin, et al., Phys. Rev. B 66, 104521 (2002).

    Article  ADS  Google Scholar 

  18. A. Andreone, et al., Physica C 372–376, 1287, (2002).

    Article  Google Scholar 

  19. A. A. Zhukov, et al., Appl. Phys. Lett. 80, 2347 (2002).

    Article  ADS  Google Scholar 

  20. A. J. Purnell, et al., Supercond. Sci. Technol. 16, 1 (2003).

    Article  ADS  Google Scholar 

  21. A. Andreone, E. Di Gennaro, G. Lamura, F. Chiarella, and R. Vaglio, J. Superconductivity 16, 807 (2003).

    Google Scholar 

  22. N. Hakim, C. Kusko, S. Sridhar, A. Soukiassian, X. H. Zeng, and X. X. Xi, Appl. Phys. Lett. 81, 4525 (2002).

    Article  Google Scholar 

  23. G. Lamura, A. J. Purnell, L. F. Cohen, A. Andreone, F. Chiarella, E. Di Gennaro, R. Vaglio, L. Hao, and J. Gallop, Appl. Phys. Lett. 82, 4525 (2003).

    Article  ADS  Google Scholar 

  24. R. A. Kaindl, M. A. Carnahan, J. Orenstein, D. S. Chemla, H. M. Christen, H. Y. Zhai, M. Paranthaman, and D. H. Lowndes, Phys. Rev. Lett. 88, 027003 (2002).

    Article  ADS  Google Scholar 

  25. A. V. Pronin, A. Pimenov, A. Loidl, and S. I. Krasnosvobodtsev, Phys. Rev. Lett. 87, 097003 (2001).

    Article  ADS  Google Scholar 

  26. J. H. Jung, et al., Phys. Rev. B 65, 052413 (2002).

    Article  ADS  Google Scholar 

  27. M. Kempa, P. Kuzel, S. Kamba, P. Samoukhina, J. Petzelt, A. Grag, and Z. H. Barber, J. Phys.: Cond. Matter 15, 8095 (2003).

    Article  ADS  Google Scholar 

  28. J. Petzelt, P. Kuzel, I. Rychetsky, A. Pashkin, and T. Ostrapchuk, Ferroelectrics 288, 169 (2003).

    Article  Google Scholar 

  29. S. F. Wang, et al., Thin Solid Film 443, 120 (2003).

    Article  Google Scholar 

  30. W. N. Kang, H.-J. Kim, E.-M. Choi, C. U. Jung, S.-I. Lee, Science 292, 1521–1523 (2001).

    Article  ADS  Google Scholar 

  31. X. H. Zeng, et al., Nature Mater. 1, 35–38 (2002).

    Article  ADS  Google Scholar 

  32. N. Klein, N. Tellmann, H. Schulz, K. Urban, S. A. Wolf, and V. Z. Kresin, Phys. Rev. Lett. 71, 3355 (1993).

    Article  ADS  Google Scholar 

  33. B. B. Jin, et al., Phys. Rev. Lett. 91, 127006 (2003).

    Article  ADS  Google Scholar 

  34. J. Halbritter, Z. Physik 243, 201 (1971); Z. Physik 266, 209 (1974).

    Article  Google Scholar 

  35. J. Halbritter, Supercond. Sci. Technol. 14, R17 (2003).

    Google Scholar 

  36. J. M. Rowell, Supercond. Sci. Technol. 16, R17 (2003).

    Article  ADS  Google Scholar 

  37. Hyeong-Jin Kim, W. N. Kang, Eun-Mi Choi, Mun-Seog Kim, Kijoon H. P. Kim, and Sung-Ik Lee, Phys. Rev. Lett. 87, 087002 (2001).

    Article  ADS  Google Scholar 

  38. J. Einfeld, P. Lahl, R. Kutzner, R. Wördenweber, G. Kästner, Physica C 103, (2001).

  39. A. N. Luiten, M. E. Tobar, J. Krupka, R. Woode, E. N. Ivanov, and A. G. Mann, J. Phys.D: Appl. Phys. 31, 1383 (1998).

    Article  ADS  Google Scholar 

  40. I. Wilke, M. Khazan, C. T. Rieck, P. Kuzel, T. Kaiser, C. Jaekel, and H. Kurz, J. Appl. Phys. 87, 2984 (2000).

    Article  ADS  Google Scholar 

  41. I. Wilke, M. Khazan, C. T. Rieck, P. Kuzel, C. Jaekel, and H. Kurz, Physica C 341-348, 2271 (2000).

    Article  Google Scholar 

  42. J. P. Tuneaure, J. Halbritter, and H. A. Schwettman, J. Supercond. 4, 341 (1991).

    Article  Google Scholar 

  43. T. Dahm, and D. J. Scalapino, Appl. Phys. Lett. 85, 4436 (2004).

    Article  ADS  Google Scholar 

  44. P. Lahl and R. Wördenweber, Appl. Phys. Lett. 81, 505 (2002).

    Article  ADS  Google Scholar 

  45. P. Lahl and R. Wördenweber, Supercond. Sci. Technol. 17, S369 (2004).

    Article  ADS  Google Scholar 

  46. J. Halbritter, J. Supercond. 8, 691 (1995).

    Article  Google Scholar 

  47. T. Dahm, and D. J. Scalapino, Appl. Phys. Lett. 69, 4248 (1996).

    Article  ADS  Google Scholar 

  48. N. Klein, et al., IEEE Trans. Appl. Supercond. 13, 3252 (2003).

    Article  Google Scholar 

  49. M. Naito, and K. Ueda, Supercond. Sci. Technol. 17, R1 (2004).

    Article  ADS  Google Scholar 

  50. X. X. Xi, et al., Supercond. Sci. Technol. 17, S196 (2004).

    Article  ADS  Google Scholar 

  51. H. Ake, J. Appl. Phys. 96, 2343 (2004).

    ADS  Google Scholar 

  52. H. Shimakage, K. Tsujimoto, Z. Wang, and M. Tonouchi, Supercond. Sci. Technol. 17, 1376 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, B.B., Dahm, T., Kadlec, F. et al. Microwave and Terahertz Surface Resistance of MgB2 Thin Films. J Supercond 19, 617–623 (2006). https://doi.org/10.1007/s10948-006-0124-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-006-0124-4

Keywords

Navigation