Skip to main content
Log in

Spintronic Transport and Kondo Effect in Quantum Dots

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

We investigate the spin-dependent transport properties of quantum-dot based structures where Kondo correlations dominate the electronic dynamics. The coupling to ferromagnetic leads with parallel magnetizations is known to give rise to nontrivial effects in the local density of states of a single quantum dot. We show that this influence strongly depends on whether charge fluctuations are present or absent in the dot. This result is confirmed with numerical renormalization group calculations and perturbation theory in the on-site interaction. In the Fermi-liquid fixed point, we determine the correlations of the electric current at zero temperature (shot noise) and demonstrate that the Fano factor is suppressed below the Poissonian limit for the symmetric point of the Anderson Hamiltonian even for nonzero lead magnetizations. We discuss possible avenues of future research in this field: coupling to the low energy excitations of the ferromagnets (magnons), extension to double quantum dot systems with interdot antiferromagnetic interaction and effect of spin-polarized currents on higher symmetry Kondo states such as SU(4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Tedrow and R. Meservey, Phys. Rev. Lett. 26, 192 (1971).

    Article  CAS  Google Scholar 

  2. M. Julliere, Phys. Lett. A 54, 225 (1975).

    Article  Google Scholar 

  3. D. D. Awschalom, D. Loss, and N. Samarth (eds.), Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).

    Google Scholar 

  4. G. A. Prinz, Science 282, 1660 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. H. Ohno, et al., Appl. Phys. Lett. 73, 363 (1998).

    Article  CAS  Google Scholar 

  6. S. S. Makler, et al., Physica B (Amsterdam) 320, 396 (1998).

    Google Scholar 

  7. T. Hayashi, M. Tanaka, and A. Asamitsu, J. Appl. Phys. 87, 4673 (2000).

    Article  CAS  Google Scholar 

  8. A. Slobodskyy, et al., Phys. Rev. Lett. 90, 246601 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. G. D. Mahan, Many-Body Physics, 2nd ed. (Plenum Press, New York, 1983), Sec. 1.4.

    Google Scholar 

  10. L. P. Kouwenhoven, et al., in Mesoscopic Electron Transport, L. L. Sohn, L. P. Kouwenhoven, and G. Schön (Kluwer Series E345, 1997).

  11. P. Hawrylak, et al., Phys. Rev. B 59, 2801 (1999).

    Article  CAS  Google Scholar 

  12. M. Keller, et al., Phys. Rev. B 64, 033302 (2001).

    Article  Google Scholar 

  13. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).

  14. L. I. Glazman and M. E. Raikh, Pis’ma Zh. Eksp. Teor. Fiz. 47, 378 (1988) [JETP Lett. 47, 452 (1988)].

    Google Scholar 

  15. T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).

    Article  PubMed  Google Scholar 

  16. L. Kouwenhoven and L. Glazman, Phys. World 14, 33 (2001).

    CAS  Google Scholar 

  17. D. Goldhaber-Gordon, et al., Nature (London) 391, 156 (1998); S. M. Cronenwett, et al., Science 281, 540 (1998); J. Schmid et al., Physica B (Amsterdam) 256–258, 182 (1998).

  18. Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 70, 2601 (1993).

    Article  PubMed  Google Scholar 

  19. T. Costi, Phys. Rev. Lett. 85, 1504 (2000).

    CAS  PubMed  Google Scholar 

  20. N. Sergueev, et al., Phys. Rev. B 65, 165303 (2002).

    Google Scholar 

  21. P. Zhang, et al., Phys. Rev. Lett. 89, 286803 (2002).

    PubMed  Google Scholar 

  22. B. R. Bulka and S. Lipiński, Phys. Rev. B 67, 024404 (2003).

    Google Scholar 

  23. R. López and D. Sánchez, Phys. Rev. Lett. 90, 116602 (2003).

    PubMed  Google Scholar 

  24. J. Martinek, et al., Phys. Rev. Lett. 91, 127203 (2003).

    CAS  PubMed  Google Scholar 

  25. B. Dong, H. L. Cui, S. Y. Liu, and X. L. Lei, J. Phys.: Condens. Matter 15, 8435 (2003).

    CAS  Google Scholar 

  26. J. Martinek, et al., Phys. Rev. Lett. 91, 247202 (2003).

    CAS  PubMed  Google Scholar 

  27. M. S. Choi, R. López, and D. Sánchez, Phys. Rev. Lett. 92, 056601 (2004).

    PubMed  Google Scholar 

  28. R. Lü and Z.-R. Liu, cond-mat/0210350 (unpublished) (2001).

  29. J. Ma, B. Dong, and X. L. Lei, cond-mat/0212645 (unpublished) (2001).

  30. J. Ma and X. L. Lei, cond-mat/0309520 (unpublished) (2003).

  31. Y. Tanaka and N. Kawakami, cond-mat/0406490 (unpublished) (2004).

  32. In the recent preprint J. Martinek et al., cond-mat/0406323 (unpublished) (2004), the gatecontrolled splitting investigated in Ref. [27] is studied in the presence of structured DOS, adding details to the overall picture.

  33. J. M. Kikkawa, et al., Science 281, 1284 (1997).

    Google Scholar 

  34. R. Hanson, et al., Phys. Rev. Lett. 91, 196802 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. W. Rudziński and J. Barnaś, Phys. Rev. B 64, 085318 (2001).

    Google Scholar 

  36. F. M. Souza, et al., cond-mat/0209263 (unpublished).

  37. Y. Meir and N. S. Wingreen, Phys. Rev. B 50, R4947 (1994).

    Google Scholar 

  38. I. I. Mazin, Phys. Rev. Lett. 83, 1427 (1999).

    CAS  Google Scholar 

  39. M.-S. Choi, N. Y. Hwang, and S.-R. E. Yang, Phys. Rev. B 67, 245, 323 (2003).

    Google Scholar 

  40. T. K. Ng, Phys. Rev. Lett. 76, 487 (1996).

    CAS  PubMed  Google Scholar 

  41. P. Coleman, Phys. Rev. B 29, 3035 (1984); D. M. Newns and N. Read, Adv. Phys. 36, 799 (1987).

  42. N. E. Bickers, Rev. Mod. Phys. 59, 847 (1987); N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11040 (1990).

    Google Scholar 

  43. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H. R. Krishna-murthy, et al., Phys. Rev. B 21, 1003 (1980); T. A. Costi, et al., J. Phys.: Condens. Matter 6, 2519 (1994). W. Hofstetter, Phys. Rev. Lett. 85, 1508 (2000).

  44. H. Kajueter and G. Kotliar, Phys. Rev. Lett. 77, 131 (1996).

    CAS  PubMed  Google Scholar 

  45. Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

    CAS  Google Scholar 

  46. Y. Meir and A. Golub, Phys. Rev. Lett. 88, 116802 (2002).

    PubMed  Google Scholar 

  47. B. Dong and X. L. Lei, J. Phys.: Condens. Matter 14, 4963 (2002).

    CAS  Google Scholar 

  48. Y. Avishai, A. Golub, and A. D. Zaikin, Phys. Rev. B 67, 041301(R) (2003).

    Google Scholar 

  49. T. Aono, A. Golub, and Y. Avishai, Phys. Rev. B 68, 045312 (2003).

    Google Scholar 

  50. R. López, R. Aguado, and G. Platero, Phys. Rev. B 69, 235305 (2004).

    Google Scholar 

  51. D. Sánchez and R. López, cond-mat/0403485 (unpublished).

  52. J. A. Hertz and K. Aoi, Phys. Rev. B 8, 3252 (1973).

    CAS  Google Scholar 

  53. S. Zhang, et al., Phys. Rev. Lett. 79, 3744 (1997).

    CAS  Google Scholar 

  54. A. M. Bratkovsky, Appl. Phys. Lett. 72, 2334 (1998).

    CAS  Google Scholar 

  55. J. S. Moodera, et al., Phys. Rev. Lett. 74, 3273 (1997).

    Google Scholar 

  56. E. Y. Tsymbal, O. Mryasov, and P. R. LeClair, J. Phys.: Condens. Matter 15, R109 (2003).

    CAS  Google Scholar 

  57. C. Heide, et al., Phys. Rev. B 59, 4287 (1999).

    CAS  Google Scholar 

  58. C. Jayaprakash, H. R. Krishna-murthy, and J. W. Wilkins, Phys. Rev. Lett. 47, 737 (1981).

    Google Scholar 

  59. A. Georges and Y. Meir, Phys. Rev. Lett. 82, 3508 (1999).

    CAS  Google Scholar 

  60. R. López, R. Aguado, and G. Platero, Phys. Rev. Lett. 89, 136802 (2002).

    PubMed  Google Scholar 

  61. P. Simon, R. López, and Y. Oreg, cond-mat/0404540 (unpublished, 2004).

  62. N. J. Craig, et al., Science 304, 565 (2004).

    CAS  PubMed  Google Scholar 

  63. L. Borda, et al., Phys. Rev. Lett. 90, 026602 (2003).

    PubMed  Google Scholar 

  64. G. Zaránd, et al., Solid State Comm. 126, 463 (2003); K. Le Hur and P. Simon Phys. Rev. B 67, 201308 (2003).

  65. R. López, et al., cond-mat/0402343 (unpublished) (2004).

  66. D. Boese, et al., Phys. Rev. B 66, 125315 (2002).

    Google Scholar 

  67. T. Taniyama, et al., Phys. Rev. Lett. 90, 016601 (2003).

    CAS  PubMed  Google Scholar 

  68. K. Tsukagoshi, et al., Nature (London) 401, 572 (1999).

    CAS  Google Scholar 

  69. J. Nygard, et al., Nature (London) 408, 342 (2000).

    CAS  Google Scholar 

  70. M. M. Deshmukh and D. C. Ralph, Phys. Rev. Lett. 89, 266803 (2002).

    PubMed  Google Scholar 

  71. A. N. Pasupathy, R. G. Bialczak, J. Martinek, J. E. Gross, L. A. K. Doney, P. L. McEuen, and C. Ralph, Science 306, 86 (2004); J. Nygard, W. Koehl, N. Mason, L. Dicarlo, and C. Marcus, cond-mat/0410467 (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-S. Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, D., López, R. & Choi, MS. Spintronic Transport and Kondo Effect in Quantum Dots. J Supercond 18, 251–260 (2005). https://doi.org/10.1007/s10948-005-3378-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-005-3378-3

Keywords

Navigation