Skip to main content
Log in

Is High TC Possible in (Ga,Mn)N?: Monte Carlo Simulation vs. Mean Field Approximation

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The magnetic properties of diluted magnetic semiconductors (DMSs) are calculated from first-principles by mapping the ab initio results on a classical Heisenberg model. By using the Korringa–Kohn–Rostoker coherent potential approximation method within the local density approximation, the electronic structure of (Ga,Mn)N and (Ga,Mn)As is calculated. Effective exchange coupling constants J ij s are calculated by using the formula of Liechtenstein et al. (A.~I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, 1987, J.~Magn. Magn. Mater. Vol. 67, p. 65). It is found that the range of the exchange interaction in (Ga,Mn)N is very short due to the exponential decay of the impurity wave function in the gap. On the other hand, in (Ga,Mn)As, the interaction is weaker but long ranged because the extended valence hole states mediate the ferromagnetic interaction. Monte Carlo simulations show that the TC values of (Ga,Mn)N are very low since percolation is difficult to achieve for small concentrations and the mean field approximation strongly overestimates TC. Even in (Ga,Mn)As the percolation effect is still important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Matsukura, H. Ohno, and T. Dietl, Handbook Magn. Mater. 14, 1 (2002).

    Google Scholar 

  2. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002).

    Google Scholar 

  3. T. Jungwirth, J. Koenig, J. Sinova, J. Kucera, and A. H. MacDonald, Phys. Rev. B 66, 012402 (2002).

    Google Scholar 

  4. K. Sato, P. H. Dederichs, H. Katayama-Yoshida, and J. Kudrnovsky, Physica B 340–342, 863 (2003).

    Google Scholar 

  5. K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002).

    Google Scholar 

  6. K. Sato, P. H. Dederichs, and H. Katayama-Yoshida, Europhys. Lett. 61, 403 (2003).

    Google Scholar 

  7. H. Akai, Phys. Rev. Lett. 81, 3002 (1998).

    Google Scholar 

  8. H. Akai and P. H. Dederichs, Phys. Rev. B 47, 8739 (1993).

    Google Scholar 

  9. A. Oswald, R. Zeller, P. J. Braspenning, and P. H. Dederichs, J. Phys. F: Metal. Phys. 15, 193 (1985).

    Google Scholar 

  10. A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).

    Google Scholar 

  11. H. Akai, http://sham.phys.sci.osaka-u.ac.jp/kkr/

  12. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 2002).

    Google Scholar 

  13. K. W. Edmonds, K. Y. Wang, R. P. Campion, A. C. Neumann, N. R. S. Farley, B. L. Gallagher, and C. T. Foxon, Appl. Phys. Lett. 81, 4991 (2002).

    Google Scholar 

  14. H. Saito, V. Zayets, S. Yamagata, and K. Ando, Phys. Rev. Lett. 90, 207202 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, K., Dederichs, P.H. & Katayama-Yoshida, H. Is High TC Possible in (Ga,Mn)N?: Monte Carlo Simulation vs. Mean Field Approximation. J Supercond 18, 33–36 (2005). https://doi.org/10.1007/s10948-005-2146-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-005-2146-8

Keywords

Navigation