High-Temperature Thermoelectric Power of The Metal Oxides: La2− x Sr x CuO4 and Bi1− x Sr x MnO3


We have investigated the high-temperature thermoelectric power (TEP) of La2− x Sr x CuO4 (0.05 ≤ x ≤ 0.35) and Bi1− x Sr x MnO3 (0.5 ≤ x ≤ 0.8) up to 700 K. Based on the TEP results we have discussed the phase transitions on each case. In the case of high-T C cuprates, La2− x Sr x CuO4 (0.05 ≤ x ≤ 0.35), the TEP shows different temperature dependences in three temperature regions. At low temperature, the positive TEP rises showing a broad peak at temperature T P, which shifts to lower temperature upon Sr doping. Right above T P, the TEP decreases linearly as temperature increases. At high temperature, TEP deviates from the linear-T dependence at a certain temperature, T H, showing a saturation behavior. The systematic change of the TEP behavior is discussed in terms of the two-fluids model, which is an intrinsically inhomogeneous state, consisted of bound pairs and independent carriers in the normal state of the high-T C superconductors. For Bi1− x Sr x MnO3 (0.5 ≤ x ≤ 0.8), the negative TEP is almost temperature-independent in the high temperature regime (T CO < T < 700 K). Near the charge ordering temperature (T CO), however, TEP suddenly decreases with decrease of temperature, indicating the suppression of carrier mobility with charge ordering transition. As Bi concentration decreases, T CO shifts to lower temperature from T CO ∼ 520 K for x = 0.5 to T CO ∼ 435 K for x = 0.8, which suggests that charge ordering is related to the local lattice distortion due to highly polarizable 6s2 character of Bi3+ ion. In comparison with the resistivity data, the TEP results have been discussed in terms of the carrier localization accompanied by local lattice distortion.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1.

    T. Timusk and B. Statt, Rep. Rrog. Phys. 62, 61 (1999) and the references therein.

    ADS  Article  Google Scholar 

  2. 2.

    Y. S. Song, H. Park, Y. S. Choi, Y. W. Park, M. S. Jang, H. C. Lee, and S. I. Lee, J. Korean Phys. Soc. 23, 492 (1990); Y. S. Song, Y. S. Choi, Y. W. Park, M. S. Jang, and S. K. Han, Physica C 185–189, 1341 (1991); Y. S. Song, Y. S. Choi, Y. W. Park, M. S. Jang, and S. K. Han, J. Moscow Phys. Soc. 1, 293 (1991).

  3. 3.

    P. Devillard and J. Ranninger, Phys. Rev. Lett. 84, 5200 (2000); J. Ranninger and L. Ttripodi, Phys. Rev. B 67, 174521 (2003).

    Google Scholar 

  4. 4.

    A. Sewer and H. Beck, Phys. Rev. B 64, 224524 (2001); P. Curty and H. Beck, Phys. Rev. Lett. 91, 247002 (2003).

  5. 5.

    V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).

    ADS  Article  Google Scholar 

  6. 6.

    P. Radaelli, D. Cox, M. Marezio, and S.-W. Cheong, Phys. Rev. B 55, 3015 (1997).

    ADS  Article  Google Scholar 

  7. 7.

    J. L. García-Muñoz, C. Frontera, M. A. G. Aranda, C. Ritter, A. Llobet, M. Respaud, M. Goiran, H. Rakoto, O. Masson, J. Vanacken, and J. M. Broto, J. Solid State Chem. 171, 84–89 (2003).

    ADS  Article  Google Scholar 

  8. 8.

    C. Frontera, J. L. García-Muñoz, C. Ritter, L. Mañosa, X. G. Capdevila, and A. Calleja, Solid State Commun. 125, 277 (2003).

    ADS  Article  Google Scholar 

  9. 9.

    J. L. García-Muñoz, C. Frontera, M. A. G. Aranda, A. Llobet, and C. Ritter, Phys. Rev. B 63, 064415 (2003).

    ADS  Article  Google Scholar 

  10. 10.

    J. Hejtmánek, K. Knížek, Z. Jirák, M. Hervieu, C. Martin, M. Nevřiva, and P. Beran, J. Appl. Phys. 93, 7370 (2003).

    ADS  Article  Google Scholar 

  11. 11.

    A. Kirste, M. Goiran, M. Respaud, J. Vanaken, J. M. Broto, H. Rakoto, M. von Ortenberg, C. Frontera, and J. L. García-Muñoz, Phys. Rev. B 67, 134413 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    J. S. Kim, B. H. Kim, D. C. Kim and Y. W. Park, J. Supercond. 17, 149 (2004).

    ADS  Google Scholar 

  13. 13.

    J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 51, 3104 (1995); Y. Nakamura and S. Uchida, Phys. Rev. B 47, 8369 (1993).

  14. 14.

    A. Ino, T. Mizokawa, K. Kobayashi, A. Fujimori, T. Sasagawa, T. Kimura, K. Kishio, K. Tamasaku, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 81, 2124 (1998).

    ADS  Article  Google Scholar 

  15. 15.

    A. Kaminski, S. Rosenkranz, H. M. Fretwell, Z. Z. Li, H. Raffy, M. Randeria, M. R. Norman, and J. C. Campuzano, Phys. Rev. Lett. 90, 207003 (2003).

    ADS  Article  Google Scholar 

  16. 16.

    H. Chiba, T. Atou, and Y. Syono, J. Solid State Chem. 132, 139 (1997)

    ADS  Article  Google Scholar 

  17. 17.

    B. Fisher, L. Patlagan, G. M. Reisner, and A. Knizhnik, Phys. Rev. B 55, 9227 (1997).

    ADS  Article  Google Scholar 

  18. 18.

    H. Woo, T. A. Tyson, M. Croft, S.-W. Cheong, and J. C. Woicik, Phys. Rev. B 63, 134412 (2001).

    ADS  Article  Google Scholar 

  19. 19.

    A. Sekiyama, S. Suga, M. Fujikawa, S. Imada, T. Iwasaki, K. Matsuda, T. Matsushita, K. V. Kaznacheyev, A. Fujimori, H. Kuwahara, and Y. Tokura, Phys. Rev. B 59, 15528 (1999).

    ADS  Article  Google Scholar 

Download references


This work was supported by the Nano Systems Institute—National Core Research Center (NSI-NCRC) program of KOSEF, Korea.

Author information



Corresponding author

Correspondence to Y. W. Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, Y.W., Kim, B.H., Kim, J.S. et al. High-Temperature Thermoelectric Power of The Metal Oxides: La2− x Sr x CuO4 and Bi1− x Sr x MnO3 . J Supercond 18, 743–748 (2005). https://doi.org/10.1007/s10948-005-0075-1

Download citation


  • thermoelectric power
  • cuprates
  • local lattice distorsions