Advertisement

Journal of Superconductivity

, Volume 18, Issue 5–6, pp 743–748 | Cite as

High-Temperature Thermoelectric Power of The Metal Oxides: La2− x Sr x CuO4 and Bi1− x Sr x MnO3

  • Y. W. Park
  • B. H. Kim
  • J. S. Kim
  • D. C. Kim
  • Boggi Kim
Article

Abstract

We have investigated the high-temperature thermoelectric power (TEP) of La2− x Sr x CuO4 (0.05 ≤ x ≤ 0.35) and Bi1− x Sr x MnO3 (0.5 ≤ x ≤ 0.8) up to 700 K. Based on the TEP results we have discussed the phase transitions on each case. In the case of high-T C cuprates, La2− x Sr x CuO4 (0.05 ≤ x ≤ 0.35), the TEP shows different temperature dependences in three temperature regions. At low temperature, the positive TEP rises showing a broad peak at temperature T P, which shifts to lower temperature upon Sr doping. Right above T P, the TEP decreases linearly as temperature increases. At high temperature, TEP deviates from the linear-T dependence at a certain temperature, T H, showing a saturation behavior. The systematic change of the TEP behavior is discussed in terms of the two-fluids model, which is an intrinsically inhomogeneous state, consisted of bound pairs and independent carriers in the normal state of the high-T C superconductors. For Bi1− x Sr x MnO3 (0.5 ≤ x ≤ 0.8), the negative TEP is almost temperature-independent in the high temperature regime (T CO < T < 700 K). Near the charge ordering temperature (T CO), however, TEP suddenly decreases with decrease of temperature, indicating the suppression of carrier mobility with charge ordering transition. As Bi concentration decreases, T CO shifts to lower temperature from T CO ∼ 520 K for x = 0.5 to T CO ∼ 435 K for x = 0.8, which suggests that charge ordering is related to the local lattice distortion due to highly polarizable 6s2 character of Bi3+ ion. In comparison with the resistivity data, the TEP results have been discussed in terms of the carrier localization accompanied by local lattice distortion.

KEY WORDS:

thermoelectric power cuprates local lattice distorsions 

Notes

ACKNOWLEDGMENT

This work was supported by the Nano Systems Institute—National Core Research Center (NSI-NCRC) program of KOSEF, Korea.

REFERENCES

  1. 1.
    T. Timusk and B. Statt, Rep. Rrog. Phys. 62, 61 (1999) and the references therein.ADSCrossRefGoogle Scholar
  2. 2.
    Y. S. Song, H. Park, Y. S. Choi, Y. W. Park, M. S. Jang, H. C. Lee, and S. I. Lee, J. Korean Phys. Soc. 23, 492 (1990); Y. S. Song, Y. S. Choi, Y. W. Park, M. S. Jang, and S. K. Han, Physica C 185–189, 1341 (1991); Y. S. Song, Y. S. Choi, Y. W. Park, M. S. Jang, and S. K. Han, J. Moscow Phys. Soc. 1, 293 (1991).Google Scholar
  3. 3.
    P. Devillard and J. Ranninger, Phys. Rev. Lett. 84, 5200 (2000); J. Ranninger and L. Ttripodi, Phys. Rev. B 67, 174521 (2003).Google Scholar
  4. 4.
    A. Sewer and H. Beck, Phys. Rev. B 64, 224524 (2001); P. Curty and H. Beck, Phys. Rev. Lett. 91, 247002 (2003).Google Scholar
  5. 5.
    V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    P. Radaelli, D. Cox, M. Marezio, and S.-W. Cheong, Phys. Rev. B 55, 3015 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    J. L. García-Muñoz, C. Frontera, M. A. G. Aranda, C. Ritter, A. Llobet, M. Respaud, M. Goiran, H. Rakoto, O. Masson, J. Vanacken, and J. M. Broto, J. Solid State Chem. 171, 84–89 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    C. Frontera, J. L. García-Muñoz, C. Ritter, L. Mañosa, X. G. Capdevila, and A. Calleja, Solid State Commun. 125, 277 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    J. L. García-Muñoz, C. Frontera, M. A. G. Aranda, A. Llobet, and C. Ritter, Phys. Rev. B 63, 064415 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    J. Hejtmánek, K. Knížek, Z. Jirák, M. Hervieu, C. Martin, M. Nevřiva, and P. Beran, J. Appl. Phys. 93, 7370 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    A. Kirste, M. Goiran, M. Respaud, J. Vanaken, J. M. Broto, H. Rakoto, M. von Ortenberg, C. Frontera, and J. L. García-Muñoz, Phys. Rev. B 67, 134413 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    J. S. Kim, B. H. Kim, D. C. Kim and Y. W. Park, J. Supercond. 17, 149 (2004).ADSGoogle Scholar
  13. 13.
    J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 51, 3104 (1995); Y. Nakamura and S. Uchida, Phys. Rev. B 47, 8369 (1993).Google Scholar
  14. 14.
    A. Ino, T. Mizokawa, K. Kobayashi, A. Fujimori, T. Sasagawa, T. Kimura, K. Kishio, K. Tamasaku, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 81, 2124 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A. Kaminski, S. Rosenkranz, H. M. Fretwell, Z. Z. Li, H. Raffy, M. Randeria, M. R. Norman, and J. C. Campuzano, Phys. Rev. Lett. 90, 207003 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    H. Chiba, T. Atou, and Y. Syono, J. Solid State Chem. 132, 139 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    B. Fisher, L. Patlagan, G. M. Reisner, and A. Knizhnik, Phys. Rev. B 55, 9227 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    H. Woo, T. A. Tyson, M. Croft, S.-W. Cheong, and J. C. Woicik, Phys. Rev. B 63, 134412 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    A. Sekiyama, S. Suga, M. Fujikawa, S. Imada, T. Iwasaki, K. Matsuda, T. Matsushita, K. V. Kaznacheyev, A. Fujimori, H. Kuwahara, and Y. Tokura, Phys. Rev. B 59, 15528 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc 2006

Authors and Affiliations

  • Y. W. Park
    • 1
  • B. H. Kim
    • 1
  • J. S. Kim
    • 1
  • D. C. Kim
    • 1
  • Boggi Kim
    • 2
  1. 1.School of Physics and Nano Systems Institute-National Core Research CenterSeoul National UniversitySeoulKorea
  2. 2.Department of PhysicsPusan National UniversityPusanKorea

Personalised recommendations