Skip to main content
Log in

Towards All Electrical Spin Injection and Detection in GaAs in a Lateral Geometry

  • Original Article
  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Herein we discuss our approach to realizing all electrical spin injection and detection in GaAs. We propose a lateral geometry, with two ferromagnetic electrodes crossing an n-doped GaAs channel. AlO x tunnel barriers are to be used in order to overcome the impedance mismatch and different widths of the two electrodes ensure different coercive fields. We present a detailed theoretical analysis of the expected magnetoresistance. Differences in behavior between lateral and vertical devices, the influence of the applied bias (electric field), and opportunities offered by different measurement geometries were explored. The MBE grown wafer consisted of 100 nm Al0.3Ga0.7As, acting as confinement layer, 100 nm n-doped (4 × l017 cm−3) GaAs, 3 nm n++ GaAs (1021 cm−3), to suppress Schottky barrier formation, and 1.5 nm Al. The Al was oxidized naturally in order to obtain tunnel barriers. By making use of in-situ shadow masks, a 0.1 mm wide channel is defined by covering the rest of the sample by insulating SiO2, followed by deposition of Ta bonding pads. Finally, 500 and 1000 nm wide CoFe electrodes crossing the GaAs channel are obtained by e-beam lithography and sputtering. We show that the IV characteristics of the CoFe/AlO x /GaAs interface are consistent with tunneling as the main injection mechanism. However, the resistance-area (5 × 109 Ω μm2) of our barriers is too high compared to the GaAs conductance (50 Ω square resistance) leading to a strong suppression of magnetoresistance. Further experiments are in progress toward optimizing barrier and channel impedance matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    Article  ADS  Google Scholar 

  2. M. N. Leuenberger, D. Loss, M. Poggio, and D. D. Awschalom, Phys. Rev. Lett. 89, 207601 (2002).

    Article  ADS  Google Scholar 

  3. A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, Nature 425, 485 (2003).

    Article  ADS  Google Scholar 

  4. J. Kikkawa and D. D. Awschalom, Nature 397, 139 (1999).

    Article  ADS  Google Scholar 

  5. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).

    Article  ADS  Google Scholar 

  6. E. I. Rashba, Phys. Rev. B Rapid Commun. 62, R16267 (2000).

    ADS  Google Scholar 

  7. C. R. Fielderling, Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, D. D. Awschalom, Nature 402, 787 (2000); Y. Ohno et al., Nature 402, 790 (2000).

  8. A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseglou, and A. Petrou, Appl. Phys. Lett. 80, 6951 (2002).

    Article  Google Scholar 

  9. R. J. Epstein, I. Malajovich, R. K. Kawakami, Y. Chye, M. Hanson, P. M. Petroff, A. C. Gossard, and D. D. Awschalom, Phys. Rev. B 65, 121202 (2002).

    Article  ADS  Google Scholar 

  10. V. F. Montsnyi, J. De Boeck, J. Das, W. van Roy, G. Borghs, E. Goovaerts, and V. I. Safarov, Appl. Phys. Lett. 81, 265 (2002).

    Article  ADS  Google Scholar 

  11. M. Tanaka and Y. Higo, Phys. Rev. Lett. 87, 026602 (2001).

    Article  ADS  Google Scholar 

  12. C. Ruster, T. Borzenko, C. Gould, G. Schmidt, L. W. Molenkamp, X. Liu, T. J. Wojtowicz, J. K. Furdyna, Z. G. Yu, and M. E. Flatte. Phys. Rev. Lett. 91, 216602 (2003).

    Article  ADS  Google Scholar 

  13. R. Mattana, J.-M. George, H. Jaffres, F. Nguyen van Dau, A. Fert, B. Lepine, A. Guivarc'h, and G. Jezequel, Phys. Rev. Lett. 90, 166601 (2003).

    Article  ADS  Google Scholar 

  14. F. Jedema, H. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees, Nature 416, 713 (2002).

    Article  ADS  Google Scholar 

  15. T. Valet and A. Fert, Phys. Rev. B 53, 65554 (1996).

    Google Scholar 

  16. Z. G. Yu and M. E. Flattè, Phys. Rev. B 66, 201202(R) (2002).

    ADS  Google Scholar 

  17. K. Flensberg, T. S. Jensen, and N. A. Mortensen, Phys. Rev. B 64, 245308 (2001).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Dutch Foundation for Fundamental Research on Matter (FOM) and The Netherland Technology Foundation (STW).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filip, A.T., Schoonus, J.J.H.M., Swagten, H.J.M. et al. Towards All Electrical Spin Injection and Detection in GaAs in a Lateral Geometry. J Supercond 18, 379–384 (2005). https://doi.org/10.1007/s10948-005-0014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-005-0014-1

KEY WORDS:

Navigation