Skip to main content
Log in

Magnetoelectric Spin-FET for Memory, Logic, and Amplifier Applications

  • Original Artilce
  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

We propose a ballistic magneto-electric device that permits conductance modulation with both electric and magnetic fields applied perpendicular to its current conduction channel. Fields are applied through the ferromagnetic gates deposited on top of a HEMT heterostructure that contains a 2DEG for current conduction. The minimal-coupling Hamiltonian with spatially uniform electrical potentials, and delta Zeeman splitting is solved in the weak-coupling limit for which the Rashba spin orbit coupling is not considered. Ballistic transmission of electrons through a periodic system of zero-gauge double-pair magnetoelectric barriers is studied. Manipulation of barriers’ geometrical symmetry and configuration leads to the conception of a spin-FET for non-volatile storage and digital logic operations. The linear modulation of electron spin polarization (|P|) is also studied for its relevance to electrical signal amplification. Perpendicular magnetization of the ferromagnetic gates permits modulation of both |P| and electron transmission (T) threshold, the latter is particularly useful for spin logic design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Matulis, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. Lett. 72, 1518 (1994).

    Article  ADS  Google Scholar 

  2. G. Papp and F. M. Peeters, Appl. Phys. Lett. 78, 2184 (2001).

    Article  ADS  Google Scholar 

  3. A. Majumdar, Phys. Rev. B 54, 11911 (1996).

    Article  ADS  Google Scholar 

  4. Y. Jiang, M. B. A. Jalil, and T. S. Low, Appl. Phys. Lett. 80, 1673 (2002).

    Article  ADS  Google Scholar 

  5. H. Z. Xu and Y. Okada, Appl. Phys. Lett. 79, 3119 (2001).

    Article  ADS  Google Scholar 

  6. Y. Guo, J.-H. Qin, X.-Y. Chen, and B.-L. Gu, Semicond. Sci. Technol. 18, 297–299 (2003).

    Article  ADS  Google Scholar 

  7. Y. Guo, B. Gu, W. Duan, and Y. Zhang, Phys. Rev. B 55, 9314 (1997).

    Article  ADS  Google Scholar 

  8. V. Umansky, R. de-Picciotto, and M. Heiblum, Appl. Phys. Lett. 71, 683 (1997).

    Article  ADS  Google Scholar 

  9. M. I. D’yakonov and V. I. Perel’, Zh. Eksp. Teor. Fiz. 60, 1954 (1971) [Sov. Phys. JETP 33, 1053 (1971)].

    Google Scholar 

  10. F. X. Bronold, I. Martin, A. Saxena, and D. L. Smith, Phys. Rev. B 66, 233206 (2002).

    Article  ADS  Google Scholar 

  11. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  MATH  ADS  Google Scholar 

  12. M. B. A. Jalil, S. G. Tan, T. Liew, K. L. Teo, and T. C. Chong, J. Appl. Phys. 95, 7321 (2004).

    Article  ADS  Google Scholar 

  13. S. Datta and B. Das, Appl. Phys. Lett. 56(7), 665 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the agency for Science, Technology, and Research (A*STAR) of Singapore for financially supporting the work under Grant No. 022 105 0053.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S.G., Jalil, M.B.A., Liew, T. et al. Magnetoelectric Spin-FET for Memory, Logic, and Amplifier Applications. J Supercond 18, 357–365 (2005). https://doi.org/10.1007/s10948-005-0010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-005-0010-5

KEY WORDS

Navigation