Journal of Structural Chemistry

, Volume 51, Issue 4, pp 635–641 | Cite as

On Mechanochemical Dimerization of Anthracene. Different Possible Reaction Pathways

  • V. M. Tapilin
  • N. N. Bulgakov
  • A. P. Chupakhin
  • A. A. Politov
  • A. G. Druganov


Calculations of the anthracene crystal structure, 10% isotropic compression of the anthracene crystal and its two dimers linked not through the central atoms of central rings are performed in the density functional theory approximation. Linear lattice parameters a, b, c, interatomic distances, and bond angles coincide with those determined by single crystal X-ray diffraction and previously calculated for an isolated anthracene molecule. The parameter γ is different by 12⪤g, which is due to a weak dependence of the lattice energy on γ (the energy of only a few kcal per mole is required to turn the lattice at this angle). The calculated lattice energy (15 kcal/mol) is close to the enthalpy of sublimation. Dimers of another configuration than those linked through the central atoms of central rings are less energetically favorable. The formation of dimers at high pressure and shear deformation of “sandwiches” composed of anthracene molecules located above each other is shown, and a two-step dimerization scheme is proposed.

Key words

anthracene dimer electronic structure mechanochemistry high pressure shear deformation. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Politov, B. A. Fursenko, and V. V. Boldyrev, Dokl. Akad. Nauk, 371, 59–62 (2000).Google Scholar
  2. 2.
    V. M. Tapilin, N. N. Bulgakov, A. P. Chupakhin, and A. A. Politov, J. Struct. Chem., 49, No. 4, 581–586 (2008).CrossRefGoogle Scholar
  3. 3.
    A. I. Kitaigorodskii, Organic Crystal Chemistry [in Russian], Izd. AN SSSR, Moscow (1955).Google Scholar
  4. 4.
    R. Mason, Acta Crystallogr., 17, 547 (1964).CrossRefGoogle Scholar
  5. 5.
    A. McL. Mathieson, J. M. Robertson, and V. C. Sinclair, ibid., 3, 245–251 (1950).Google Scholar
  6. 6.
    F. R. Ahmed and D. W. J. Cruickshank, ibid., 5, 852–857 (1952).Google Scholar
  7. 7.
    D. W. J. Cruickshank, ibid., 9, 915–921 (1956).Google Scholar
  8. 8.
    V. I. Ponomarev and G. V. Shilov, Kristallografiya, 28, 674–680 (1983).Google Scholar
  9. 9.
    C. P. Brock and J. D. Dunitz, Acta Crystallogr. Sect. B: Struct. Sci., 46, 795–800 (1990).CrossRefGoogle Scholar
  10. 10.
    B. Marciniak and V. Pavlyuk, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 373, 237–245 (2002).CrossRefGoogle Scholar
  11. 11.
    J. M. Tomas and J. O. Williams, in: Progress in Solid State Chemistry, Pergamon, Oxford; New York, 6, 119–154 (1971).Google Scholar
  12. 12.
    K. Nass, D. Lenoir, and A. Kettrup, Angew. Chem. Int. Ed. Eng., 34, 1735–1745 (1995).CrossRefGoogle Scholar
  13. 13.
    A. I. Kitaigorodskii, Molecular Crystals [in Russian], Nauka, Moscow (1971).Google Scholar
  14. 14.
    M. Oehzelt, G. Heimel, R. Resel, et al., J. Chem. Phys., 119, 1078–1085 (2003).CrossRefGoogle Scholar
  15. 15.
    A. Katrusiak and P. F. McMillan (Eds.), High-Pressure Crystallography, Kluwer, Dordrecht (2004).Google Scholar
  16. 16.
    Z. A. Dreger, H. Lucas, and Y. V. Gupta, J. Phys. Chem. B, 107, 9268–9274 (2003).CrossRefGoogle Scholar
  17. 17.
    A. P. Chupakhin, A. A. Sidel’nikov, and V. V. Boldyrev, Reactivity of Solids, 3, 1–19 (1987).CrossRefGoogle Scholar
  18. 18.
    K. A. Abboud, S. H. Simonsen, and R. M. Roberts, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 46, 2494–2499 (1990).CrossRefGoogle Scholar
  19. 19.
    G. M. I. Schmidt, J. Chem. Soc., 6, 2014–2021 (1964).CrossRefGoogle Scholar
  20. 20.
    V. R. Regel’, A. I. Slutsker, and É. E. Tomashevskii, Kinetic Nature of the Hardness of Solids [in Russian], Nauka, Moscow (1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. M. Tapilin
    • 1
  • N. N. Bulgakov
    • 1
    • 2
  • A. P. Chupakhin
    • 2
  • A. A. Politov
    • 2
    • 3
  • A. G. Druganov
    • 2
    • 4
  1. 1.G. K. Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  4. 4.N. N. Vorozhtsov Institute of Organic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations