Skip to main content
Log in

Methods for topological analysis of atomic nets

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The current development level of new crystal chemical methods connected with the topological analysis of atomic nets is briefly reviewed. The terminology used to describe atomic nets is considered along with the main methods for their classification and some special issues such as the study of interpenetrating nets and tilings. It is noted that the crucial problem of the modern crystal chemistry is the search for regularities underlying the global properties of a structure (both geometric and topological) such as the atomic net topology, types of atomic and molecular packing, size and architecture of voids and channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. S. Motherwell, Cryst. Rev., 14, No.2, 97–116 (2008).

    Article  Google Scholar 

  2. A. F Wells, Acta Crystallogr., 7, 535–544 (1954).

    Article  CAS  Google Scholar 

  3. A. F Wells, Three-Dimensional Nets and Polyhedra., Wiley-Interscience, New York (1977).

    Google Scholar 

  4. M. O’Keeffe and B. G.Hyde, Crystal Structures. I. Patterns and Symmetry, Mineralogical Society of America, Washington (1996).

    Google Scholar 

  5. M. O’Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi, Acc. Chem. Res., ASAP article, DOI: 10.1021/ar800124u (2008).

  6. S. J. Ramsden, V. Robins, and S. T. Hyde, Acta Crystallogr., A65, 81–108 (2009).

    CAS  Google Scholar 

  7. V. A. Blatov, IUCr Compcomm. Newsletter, 7, 4–38 (2006).

    Google Scholar 

  8. O. Delgado-Friedrichs and M. O’Keeffe, Acta Crystallogr., A59, 351–360 (2003).

    CAS  Google Scholar 

  9. O. Delgado-Friedrichs, M. D. Foster, M. O’Keeffe, et al., J. Solid State Chem., 178, 2533–2554 (2005).

    Article  CAS  Google Scholar 

  10. S. T. Hyde, O. Delgado-Friedrichs, S. J. Ramsden, and V. Robins, Solid State Sci., 8, 740–752 (2006).

    Article  CAS  Google Scholar 

  11. L. Carlucci, G. Ciani, and D. M. Proserpio, Coord. Chem. Rev., 246, 247–289 (2003).

    Article  CAS  Google Scholar 

  12. L. Carlucci, G. Ciani, and D. M. Proserpio, in: Making Crystals by Design. Methods, Techniques and Applications, D. Braga and F. Grepioni (eds.), Wiley, Darmstadt (2007), pp. 58–85.

    Google Scholar 

  13. L. Öhrström and K. Larsson. Molecule-Based Materials: The Structural Network Approach, Elsevier, Amsterdam (2005).

    Google Scholar 

  14. E. A. Lord, A. L. Mackay, and S. Ranganathan, New Geometries for New Materials, Cambridge University Press, Cambridge (2006).

    Google Scholar 

  15. O. Delgado-Friedrichs and M. O’Keeffe, J. Solid State Chem., 178, 2480–2485 (2005).

    Article  CAS  Google Scholar 

  16. E. Koch and W. Fischer, Z. Kristallogr., 148, 107–152 (1978).

    Google Scholar 

  17. W. E. Klee, Cryst. Res. Technol., 39, 959–968 (2004).

    Article  CAS  Google Scholar 

  18. C. Bärlocher, W. M. Meier, and D. H. Olson, Atlas of Zeolite Framework Types, Elsevier, London (2001).

    Google Scholar 

  19. O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, Acta Crystallogr., A59, 22–27 (2003).

    CAS  Google Scholar 

  20. E. Koch, W. Fischer, and H. Sowa, ibid., A62, 152–167 (2006).

    CAS  Google Scholar 

  21. V. A. Blatov, L. Carlucci, G. Ciani, and D. M. Proserpio, CrystEngComm., 6, 378–395 (2004).

    Article  Google Scholar 

  22. N. W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, Acc. Chem. Res., 38, 176–182 (2005).

    Article  Google Scholar 

  23. I. A. Baburin, V. A. Blatov, L. Carlucci, et al., J. Solid State Chem.,178, No. 8, 2452–2474 (2005).

    Article  CAS  Google Scholar 

  24. I. A. Baburi and V. A. Blatov, Acta Crystallogr., B63, No. 5, 791–802 (2007).

    Google Scholar 

  25. I. A. Baburin, Z. Kristallogr., 223, No. 6, 371–381 (2008).

    Article  CAS  Google Scholar 

  26. I. A. Baburin, V. A. Blatov, L. Carlucci, et al., Cryst. Growth Des., 8, No. 2, 519–539 (2008).

    Article  CAS  Google Scholar 

  27. I. A. Baburin, V. A. Blatov, L. Carlucci, et al., CrystEngComm., 10, No.10, 1822–1838 (2008).

    Article  CAS  Google Scholar 

  28. V. A. Blatov, Acta Crystallogr., A63, 329–343 (2007).

    CAS  Google Scholar 

  29. A. F. Wells, ibid., 7, 849–853 (1954).

    Article  CAS  Google Scholar 

  30. S. R. Batten and R. Robson, Angew. Chem. Int. Ed., 37, 1460–1494 (1998).

    Article  Google Scholar 

  31. T. R. Shattock, P. Vishweshwar, Z. Wang, and M. J. Zaworotko, Cryst. Growth Des., 5, 2046 (2005).

    Article  CAS  Google Scholar 

  32. V. A. Blatov, O. Delgado-Friedrichs, M. O’Keeffe, and D. M. Proserpio, Acta Crystallogr., A63, 418–425 (2007).

    CAS  Google Scholar 

  33. V. A. Blatov, G. D. Ilyshin, O. A. Blatova, et al., ibid., B62, No. 6, 1010–1018 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Blatov.

Additional information

Original Russian Text Copyright © 2009 by V. A. Blatov

Translated from Zhurnal Strukturnoi Khimii, Vol. 50, Supplement, pp. S166–S173, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatov, V.A. Methods for topological analysis of atomic nets. J Struct Chem 50 (Suppl 1), 160–167 (2009). https://doi.org/10.1007/s10947-009-0204-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-009-0204-y

Keywords

Navigation