Skip to main content
Log in

Crystal structures of crown and aza-crown ether complexes with zirconium, hafnium, niobium, and tantalum fluorometallates

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A systematic X-ray diffraction study of the interaction products of Zr(IV), Hf(IV), Nb(V), and Ta(V) oxides (fluorides) with crown-ethers (CEs) in aqueous solutions of hydrofluoric acid is performed. It is shown that oxygen-containing CEs form oxonium complexes with [NbF6]s- and [TaF6]s- hexafluorometallate anions. In two systems, [cis-syn-cis-DCH18C6-H3O][TaF6] and [B18C6·H3O][TaF6], the phenomenon of supramolecular isomerism is found, which is caused by a change in the conformation of the macrocycle or by a partial redistribution of intermolecular hydrogen bonds. The use of aza-crown ethers as extractants made it possible to extract unique hydrolytically unstable anions, the products of incomplete fluorine substitution for oxygen atoms in the starting oxides in the form of crystalline complexes with a composition of [(HA15C5)2][Ta2F10O] and [(HA18C6·H2O)(A18C6·H2O)] [(H2O)Nb2F9O]. In [(18C6)(H7O3)2×(Hf2F10·2H2O)], [(HA18C6)(M2F10·2H2O)·(H3O)·H2O], and [(H2DA18C6) (M2F10·2H2O)·2H2O] (M=Zr, Hf) complexes, the metals are extracted in the form of identical (M2F10·2H2O)2s- anions with a similar topology. The performed study demonstrates that macrocyclic complexones are undoubtedly promising to extract Zr(IV), Hf(IV), Nb(V), and Ta(V) from fluorine-containing aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) M. M. Godneva and D. L. Motov, Chemistry of Zirconium and Hafnium Fluoride Compounds [in Russian], Nauka, Leningrad (1971); (b) A. G. Babkin, V. G. Maiorov, and A. I. Nikolaev, Extraction of Niobium, Tantalum, and Other Elements from Fluoride Solutions [in Russian], Nauka, Leningrad (1988); c) È. G. Rakov, Chemistry and Technology of Inorganic Fluorides [in Russian], Moscow Chem. Technol. Institute, Moscow (1990).

  2. (a) R. D. Rogers, A. N. Rollins, and M. M. Benning, Inorg.Chem., 27, 3826–3835 (1988); (b) G. G. Talanova, N. S. A. Elkarim, V. S. Talanov, etal., J. Am. Chem. Soc., 121, 11281–11290 (1999); (c) R. D. Rogers, S. E. Huggins, R. F. Henry, and A. H. Bond, Supramol. Chem., 1, 59–63 (1992); (d) R. D. Rogers, A. H. Bond, R. F. Henry, and A. N. Rollins, ibid., 4, 191–202 (1994).

  3. (a) N. R. Strel’tsova, L. V. Ivakina, P. A. Storozhenko, et al., Dokl. Akad. Nauk SSSR, 291, No. 6, 1373–1376 (1986); (b) V. K. Bel’skii, B. M. Bulychev, N. R. Strel’tsova, et al., Zh. Obshch. Khim., 59, No. 8, 1806–1809 (1989); (c) T. B. Rubtsova, O. K. Kireeva, B. M. Bulychev, et al., Polyhedron., 11, 1929–1938 (1992); (d) N. R. Strel’tsova, V. K. Bel’skii, B. M. Bulychev, and O. K. Kireeva, Zh. Neorg. Khim., 37, No. 8, 1815–1821 (1992); (e) N. R. Strel’tsova, B. M. Bulychev, V. K. Bel’skii, and O. K. Kireeva, Zh. Obshch. Khim., 61, No. 4, 795–802 (1991); (f) V. K. Bel’skii, B. M. Bulychev, and N. R. Strel’tsova, Zh. Neorg. Khim., 37, No. 7, 1531–1541 (1992); (g) T. M. Polyanskaya, N. G. Furmanova, and T. N. Martynova, J. Struct. Chem., 34, No. 6, 879–887 (1993); (h) T. M. Polyanskaya, Yu. V. Gatilov, T. N. Martynova, and L. D. Nikulina, ibid., 33, No. 2, 332/333 (1992); (i) P. C. Junk, L. M. Louis, and M. K. Smith, Z. Anorg. Allg. Chem., 628, 1196–1209 (2002); (j)B. Neumuller and K. Dehnicke, ibid., 632, 1681–1686 (2006); (k) A. N. Chekhlov, Zh. Obshch. Khim., 74, No. 8, 1244–1249 (2004).

  4. (a) P. D. Prince and J. W. Steed, Supramol. Chem., 10, 155–158 (1998); (b) P. D. Prince, P. J. Cragg, and J. W. Steed, Chem. Commun., 1179/1180 (1999); (c) J. W. Steed, K. Johnson, C. Legido, and P. C. Junk, Polyhedron, 22, 769–774 (2003); (d) P. Arya, A. Channa, P. J. Cragg, et al., New J. Chem., 26, 440–447 (2002); (e) P. G. Jones, T. Gries, H. Grutzmacher, et al., Angew. Chem., Int. Ed., 23, 376 (1984); (f) M. Wen, M. Munakata, Y. Suenaga, et al., Polyhedron, 23, 2117–2123 (2004); (g) M. Wen, M. Maekawa, M. Munakata, et al., Inorg. Chim. Acta, 338, 111–118 (2002); (h) Q.-M. Wang and T. C. W. Mak, Angew. Chem., Int. Ed., 40, 1130–1133 (2001); (i) Q.-M. Wang and T. C. W. Mak, Chem. Eur. J., 9,43–50 (2003).

  5. (a) M. Calleja, K. Johnson, W. J. Belcher, and J. W. Steed, Inorg. Chem., 40, 4978–4985 (2001); (b) M. Calleja, S. A. Mason, P. D. Prince, et al., New J. Chem., 25, 1475–1478 (2001).

  6. R. D. Rogers and A. H. Bond, Inorg. Chim. Acta., 192, 163–171 (1992).

    Article  CAS  Google Scholar 

  7. (a) A. H. Bond and R. D. Rogers, J. Chem. Cryst., 28, 521–527 (1998); (b) R. D. Rogers and A. H. Bond, Inorg. Chim. Acta, 250,105–117 (1996).

  8. (a) R. D. Rogers, L. K. Kurihara, and M. M. Benning, J. Inclus. Phenom., 5, 645–658 (1987); (b) R. D. Rogers, L. K. Kurihara, and M. M. Benning, Inorg. Chem., 26, 4346–4352 (1987); (c) R. D. Rogers and M. M. Benning, Acta Crystallogr., C44, 1397–1399 (1988); (d) R. D. Rogers and M. M. Benning, J. Inclus. Phenom., 11, 121–135 (1991); (e) R. D. Rogers, A. H. Bond, W. G. Hipple, et al., Inorg.Chem., 30, 2671–2679 (1991).

  9. (a) R. D. Rogers, A. H. Bond, and S. Aguinaga, J. Am. Chem. Soc., 114, 2960–2967 (1992); (b) R. D. Rogers, A. H. Bond, S. Aguinaga, and A. Reyes, ibid., 114, 2967–2977 (1992).

  10. (a) R. D. Rogers and A. N. Rollins, J. Crystallogr. Spectrosc. Res., 20, 389–393 (1990); (b) R. D. Rogers and L. K. Kurihara, Inorg. Chim. Acta, 129, 277–282 (1987); (c) R. D. Rogers and L. K. Kurihara, Inorg. Chem., 26, 1498–1502 (1987); (d) R. D. Rogers and L. K. Kurihara, Inorg. Chim. Acta, 130, 131–137 (1987); (e) R. D. Rogers, L. K. Kurihara, and M. M. Benning, Acta Crystallogr., C43, 1056–1058 (1987); (f) R. D. Rogers and L. K. Kurihara, J. Inclus. Phenom., 4, 351–358 (1986); (g) R. D. Rogers, L. K. Kurihara, and E. J. Voss, Inorg. Chem., 26, 2360–2365 (1987); (h) R. D. Rogers, Inorg. Chim. Acta, 133, 347–352 (1987); (i) R. D. Rogers, ibid., 133, 175–180 (1987).

  11. P. C. Junk, New J. Chem., 32, 762–773 (2008).

    Article  CAS  Google Scholar 

  12. G. B. Bokii, I. P. Voronina, E. F. Korytnyi, et al., Crystal Structures of Fluorine Compounds, Itogi Nauki i Tekhniki. Ser. Kristal Khim., 8, 129 (1972).

    Google Scholar 

  13. G. B. Bokii, N. L. Smirnova, I. A. Rozdin, and V. S. Sergienko, ibid., 13, 5–143 (1979).

    CAS  Google Scholar 

  14. D. K. Arkhipenko and G. B. Bokii, Miner. Zh., 3, No. 4, 27–34 (1981).

    CAS  Google Scholar 

  15. V. O. Gelmboldt, È. V. Ganin, L. V. Koroeva et al., Zh. Neorg. Khim., 46, No. 11,1833–1840 (2001).

    CAS  Google Scholar 

  16. F. N. Allen, Acta Crystallogr., B58, 380–388 (2002).

    CAS  Google Scholar 

  17. (a) V. O. Gelmboldt, Yu. A. Simonov, È. V. Ganin, et al., Koordinats. Khim., 22, No. 1, 21–32 (1996); (b) V. O. Gelmboldt, E. V. Ganin, M. S. Fonari, et al., Dalton Trans., 27, 2915–2924 (2007).

  18. M. S. Fonari, Yu. A. Simonov, W.-J. Wang, et al., Polyhedron, 26, 5193–5202 (2007).

    Article  CAS  Google Scholar 

  19. M. S. Fonari, O. A. Alekseeva, N. G. Furmanova, et al., Kristallografiya, 52, No. 2, 271–276 (2007).

    Google Scholar 

  20. M. S. Fonari, N. G. Furmanova, V.-D. Vang, et al., ibid, 51, No. 5, 856–862 (2006).

    Google Scholar 

  21. Ed. V. Ganin, V. O. Gelmboldt, L. V. Koroeva, et al., J. Inclus. Phenom., 56, 345–354 (2006).

    Article  CAS  Google Scholar 

  22. N. G. Furmanova, M. Kh. Rabadanov, T. S. Chernaya, et al., Kristallografiya, 53, No. 2, 273–278 (2008).

    Google Scholar 

  23. M. S. Fonari, V. Ch. Kravtsov, Yu. A. Simonov, et al., Polyhedron., 27, 2049–2058 (2008).

    Article  CAS  Google Scholar 

  24. V. S. Sergienko, A. B. Ilyukhin, A. V. Luzikova, and M. A. Porai-Koshits, Koordinats. Khim., 17, No. 11, 1489–1496 (1991).

    CAS  Google Scholar 

  25. P. C. Junk and J. L. Atwood, J. Chem. Soc. Chem. Commun., 1551/1552 (1995).

    Google Scholar 

  26. J. C. Dewan, A. J. Edwards, J. Y. Calves, and J. E. Guerchais, J. Chem. Soc. Dalton Trans., 978–980 (1977).

  27. N. F. Stephens and P. Lightfoot, Acta Crystallogr., C61, m344/m345 (2005).

    Google Scholar 

  28. A. A. Levin and P. N. D’yachkov, Electronic Structure, Structure, and Transformations of Heteroligand Molecules [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  29. Yu. A. Buslaev and E. G. Il’in, Interligand Interactions and Stereochemistry of Octahedral Heteroligand Complexes [in Russian], Itogi Nauki i Tekhniki, Ser. Neorg. Khim., Vol. 16, VINITI, Moscow (1987).

    Google Scholar 

  30. R. L. Davidovich, Koordinats. Khim., 24, No. 11, 803–821 (1998).

    Google Scholar 

  31. R. L. Davidovich, ibid., 25, No. 4, 243–255 (1999).

    Google Scholar 

  32. Yu. A. Simonov, M. S. Fonari, J. Lipkowski, et al., J. Inclus. Phenom., 24,149–161 (1996).

    Article  CAS  Google Scholar 

  33. V. O. Gelmboldt, Yu. A. Simonov, J. Lipkowski, et al., Koordinats. Khim., 24, No. 3,210–214 (1998).

    Google Scholar 

  34. V. V. Tkachev, L. O. Atovmyan, V. B. Logvinova, and R. L. Davidovich, ibid., 22, No. 9, 677–681 (1996).

    Google Scholar 

  35. V. V. Tkachev, L. O. Atovmyan, V. B. Logvinova, and R. L. Davidovich, ibid., No. 10, 727–732.

  36. (a) A. Pendleton, S. Kundu, and H. Liang, J. Nanopart. Res., 11, 505–510 (2009); (b) C. Wu and K. Chao, J. Chem. Soc. Faraday Trans., 91, 167–173 (1995); (c) P. A. Wright, R. E. Morris, and P. S. Wheatley, Dalton Trans., 5359–5368 (2007); (d) P. Thuèry, CrystEngComm., 11, 232–234 (2009); (e) E. V. Alekseev, S. V. Krivovichev, and W. Depmeier, Angew. Chem. Int. Ed., 47, 549–551 (2008); (f) E. Coronado, J. R. Galôn-Mascaros, and C. Marti-Gastaldo, Inorg. Chem., 45, 1882–1884 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Fonari.

Additional information

Original Russian Text Copyright © 2009 by M. S. Fonari, N. G. Furmanova, and Yu. A. Simonov

Translated from Zhurnal Strukturnoi Khimii, Vol. 50, Supplement, pp. S131–S142, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonari, M.S., Furmanova, N.G. & Simonov, Y.A. Crystal structures of crown and aza-crown ether complexes with zirconium, hafnium, niobium, and tantalum fluorometallates. J Struct Chem 50 (Suppl 1), 124–135 (2009). https://doi.org/10.1007/s10947-009-0200-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-009-0200-2

Keywords

Navigation