Journal of Structural Chemistry

, Volume 50, Issue 5, pp 954–961 | Cite as

Conformation analysis of nucleic acids and proteins adsorbed on single-shell carbon nanotubes

  • G. I. DovbeshkoEmail author
  • O. M. Fesenko
  • E. D. Obraztsova
  • K. R. Allakhverdiev
  • A. E. Kaja
Proceedings of the XIV Seminar On Intermolecular Interactions and Molecule Conformations


This paper presents a concise review of the experimental and calculated data reported in the literature on the noncovalent interactions of DNA and proteins with the nonfunctionalized carbon nanotubes. Our Raman scattering and electron microscopy data on carbon nanotubes and SEIRA spectral data on changes in the conformational state of the main biological polymers (DNA, Poly, BSA, and RNase) in reactions with single-shell carbon nanotubes allowed us to define the character of noncovalent interactions in the tube biomolecule system. An analysis of the data showed that reactions of DNA with nanotubes lead to the binding on the surface of the nanotube and form stable complexes with van der Waals interactions, in which stacking plays the major role and which changes the hydrogen bonds in the biological molecule with structure rearrangements. Albumin and RNase are presumably adsorbed at the conventional binding sites of these proteins on the nanotube with participation of hydrophobic interaction and π stacking, as indicated by structure rearrangements in proteins.


carbon nanotubes DNA polyadenylic acid potassium salt (PolyA) rhibonuclease bovine serum albumin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Eletskii, Usp. Fiz. Nauk, 167, No. 9, 945–971 (1997).CrossRefGoogle Scholar
  2. 2.
    D. Pantarotto, R. Singh, D. McCarthy, et al., Angew. Chem. Int. Ed., 43, 5242–5246 (2004).CrossRefGoogle Scholar
  3. 3.
    A. Bianco, Expert Opin. Drug Deliv., 1, 57–65 (2004).CrossRefGoogle Scholar
  4. 4.
    J. Hartgerink, E. Benias, and S. Stupp, Nature, 294, 1684 (2001).Google Scholar
  5. 5.
    K. Maehashi, K. Matsumoto, K. Kerman, et al., Jpn. J. Appl. Phys., 43, 1558–1560 (2004).CrossRefGoogle Scholar
  6. 6.
    K. Williams, T. Veenhuizen, B. de la Torre, et al., Nature, 420, 761 (2002).CrossRefGoogle Scholar
  7. 7.
    K. Besteman, J. Lee, F. Wiertz, et al., Nano Lett., 3, No. 6, 727–730 (2003).CrossRefGoogle Scholar
  8. 8.
    J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123, No. 16, 3838/3839 (2001).CrossRefGoogle Scholar
  9. 9.
    S. Wong, E. Joselevich, A. Woolley, et al., Nature, 94., 52–55 (1998).Google Scholar
  10. 10.
    E. Bekyarova, N. Y. Yingchun, E. Malarkey, et al., J. Biomed. Nanotechnol., 1, 3–17 (2005).CrossRefGoogle Scholar
  11. 11.
    M. O’Connel, P. Boul, L. Ericson, et al., Chem. Phys. Lett., 342, No. 3, 265–271 (2001).CrossRefGoogle Scholar
  12. 12.
    M. Zheng, A. Jagota, E. Semke, et al., Nature Mater., 2, 338–342 (2003).CrossRefGoogle Scholar
  13. 13.
    M. Zheng, A. Jagota, M. Strano, et al., Science, 302, 1545–1548 (2003).CrossRefGoogle Scholar
  14. 14.
    D. Cui, C. Ozkan, S. Ravindran, et al., Mechan. Chem. Biosystems, 1, No. 2, 113–121 (2004).Google Scholar
  15. 15.
    H. Gao, Y. Kong, D. Cui, and C. Ozkan, Nano Lett., 3, 471–473 (2003).CrossRefGoogle Scholar
  16. 16.
    A. F. Finkelshtein and O. B. Ptitsyn, Fiz. Belka, Knizhnyi Dom, Moscow (2005).Google Scholar
  17. 17.
    G. I. Dovbeshko, O. M. Fesenko, Yu. M. Shirshov, and V. I. Chegel, Semicond., Quant. Electronics and Optoelectronics, 7, No. 4, 411–424 (2004).Google Scholar
  18. 18.
    G. Dovbeshko, O. Repnytska, E. Obraztsova, and Y. Shtogun, Chem. Phys. Lett., 372, 432–437 (2003).CrossRefGoogle Scholar
  19. 19.
    G. Dovbeshko, V. Chegel, O. Paschuk, et al., in: Frontiers of Multifunctional Integrated Nanosystems, E. Buzaneva and P. Scharff (eds.), Kluwer Academic Publishers (2004), pp. 447–466.Google Scholar
  20. 20.
    L. Kador, T. Schittkowski, M. Bauer, and Y. Fan, Appl. Opt., 40, 4965–4970 (2001).CrossRefGoogle Scholar
  21. 21.
    L. C. Pérez, L. Kador, K. R. Allakhverdiev, et al., J. Appl. Phys., 98, 103 (2005).Google Scholar
  22. 22.
    E. Obraztsova, J. Bonard, and V. Kuznetsov, Nanostruct. Mater., 12, 567 (1999).CrossRefGoogle Scholar
  23. 23.
    M. Dresselhaus, G. Dresselhaus, and R. Saito, Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).Google Scholar
  24. 24.
    A. Ferrari and J. Robertson, Phys. Rev. B, 61, No. 20, 14095–14107 (2000).CrossRefGoogle Scholar
  25. 25.
    G. I. Dovbeshko, O. P. Gnatyuk, A. A. Nazarova, et al., Fullerene Nanotubes and Carbon Nanostructures, 13, 393–400 (2005).CrossRefGoogle Scholar
  26. 26.
    J. Chen, A. Hamon, H. Hu, et al., Science, 282, 95–98 (1998).CrossRefGoogle Scholar
  27. 27.
    A. Jorio, R. Satio, J. Hafner, et al., Phys. Rev. Lett., 86, 1118 (2001).CrossRefGoogle Scholar
  28. 28.
    G. I. Dovbechko, O. D. Obraztsova, O. M. Fesenko, and K. Yakovkin, Sensor Electronics and Microsystem Technologies, 1, 36–46 (2006).Google Scholar
  29. 29.
    B. Schrader, Infrared and Raman Spectroscopy, VCH, Weinheim (1995).CrossRefGoogle Scholar
  30. 30.
    E. Taillandier, J. Liquier, and J. Taboury, in: Advances in Infrared and Raman Spectroscopy, R. J. H. Clarc and R. E. Hester (eds.), Willey Heyden, New York (1985).Google Scholar
  31. 31.
    H. Tajmir-Riahi, J. Neault, and M. Naoui, FEBS Letters, 370, No. 2, 105–108 (1995).CrossRefGoogle Scholar
  32. 32.
    G. Dovbeshko, A. Nazarova, O. Shishkin, et al., VIIth Int. Conf. Molecular Spectroscopy, Ladek Zdroj, Poland (2005), p. 16.Google Scholar
  33. 33.
    J. Kapuscinski and Z. Darzynkiewicz, J. Biomol. Struct. Dynamics, 5, No. 1, 127–147 (1987).Google Scholar
  34. 34.
    M. Sinnokrot and C. J. Sherrill, J. Phys. Chem. A, 107, 8377 (2003).CrossRefGoogle Scholar
  35. 35.
    G. Dovbeshko, A. Damin, A. Zecchina, et al., 12th Europ. Conf. Spectroscopy of Biological Molecules, France, Bobigny (2007), p. 144.Google Scholar
  36. 36.
    A. Wlodawar, N. Borkakoti, D. S. Moss, and B. Howlin, Acta Crystallogr. B, 42, 379–387 (1986).CrossRefGoogle Scholar
  37. 37.
    G.-L. Friedli, Interaction of SWP with Bovine Serum Albumin (BSA), PhD Thesis, Emmitsburg (1996), (
  38. 38.
    K. N. Houk et al., Angew. Chem., 42, No. 40, 4872–4897 (2003).CrossRefGoogle Scholar
  39. 39.
    M. V. Wolkenstein, Biophysics [in Russian], Nauka, Moscow (1988).Google Scholar
  40. 40.
    E. Goormaghtigh, V. Cabiaux, and J.-M. Ruysschaert, Subcell. Biochem., 23, 405–450 (1994).Google Scholar
  41. 41.
    N. Naguib, Y. Mueller, P. Bojczuk, et al., Nanotechnol., 16, 567–571 (2005).CrossRefGoogle Scholar
  42. 42.
    S. Wang, E. Humphreys, S. Chung, et al., Nature Mater., 2, 196–200 (2003).CrossRefGoogle Scholar
  43. 43.
    Th. U. Werder, Multiscale Simulations of CNT in Aqueous Environments, Doctoral Thesis, Swiss Fed. Inst. of Tech., Zurich (2005).Google Scholar
  44. 44.
    M. Levitt and J. Greer, J. Mol. Biol., 114, 181–239 (1977).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • G. I. Dovbeshko
    • 1
    Email author
  • O. M. Fesenko
    • 1
  • E. D. Obraztsova
    • 2
  • K. R. Allakhverdiev
    • 3
    • 4
  • A. E. Kaja
    • 3
  1. 1.Institute of PhysicsNational Academy of Sciences of UkraineKievRussia
  2. 2.Natural Sciences Research Center, Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Materials ScienceTUBITAKGebze, KochaeliTurkey
  4. 4.Institute of PhysicsNational Academy of Sciences of AzerbaijanBakuRussia

Personalised recommendations