Skip to main content
Log in

Thermodynamic perturbation theory of simple liquids

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

It was proven that after averaging over the canonical Gibbs ensemble, the mean perturbation energy was singled out of the classical partition function before the expansion in a series of perturbation theory. Therefore, the term that formally coincides with first order perturbation theory in a decomposition of the Helmholtz free energy bears no relationship to perturbation theory. Then the proper series of the thermodynamic perturbation theory always starts with a second order infinitesimal. Therefore, the wellknown condition of applicability of the thermodynamic perturbation theory, “...the requirement that the perturbation energy per particle be small compared with T...” (L. D. Landau and E. M. Livshits, Statistical Physics, Vol. V, Pt. I), can be substantially weakened. The most important factor for applicability of thermodynamic perturbation theory is the value of many-particle correlations in an unperturbed system, but not the smallness of the perturbation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke (eds.), Physics of Simple Liquids [in Russian], North-Holland, Amsterdam (1971).

    Google Scholar 

  2. L. D. Landau and E. M. Livshits, Statistical Physics [in Russian], Vol. V, Pt. 1, Fizmatlit, Moscow (2005).

  3. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys., 30, No. 12, 5237–5247 (1971).

    Article  Google Scholar 

  4. H. C. Andersen, J. D. Weeks, and D. Chandler, Phys. Rev. A, 4, No. 4, 1597–1607 (1971).

    Article  Google Scholar 

  5. L. Verlet and J.-J. Weis, ibid., 5, No. 2, 939–952 (1972).

    Article  Google Scholar 

  6. F. H. Ree, J. Chem. Phys., 64, No. 11, 4601–4605 (1976).

    Article  CAS  Google Scholar 

  7. M. Ross, ibid., 71, No. 4, 1567–1571 (1979).

    Article  CAS  Google Scholar 

  8. F. Lado, Mol. Phys., 52, No. 4, 871–876 (1984).

    Article  CAS  Google Scholar 

  9. H. G. Kang, S. C. Lee, and T. Ree, J. Chem. Phys., 82, No. 1, 415–423 (1985).

    Article  Google Scholar 

  10. J. A. Barker and D. Henderson, Rev. Mod. Phys., 48, No. 4, 587–673 (1976).

    Article  CAS  Google Scholar 

  11. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Third Edition, Elsevier (2006), p. 416.

  12. J. A. Barker and D. Henderson, J. Chem. Phys., 47, No. 8, 2856–2861 (1967).

    Article  CAS  Google Scholar 

  13. W. R. Smith, D. Henderson, and J. A. Barker, ibid., 53, No. 2, 508–515 (1970).

    Article  CAS  Google Scholar 

  14. W. R. Smith, D. Henderson, and J. A. Barker, ibid., 55, No. 8, 4027–4033 (1971).

    Article  CAS  Google Scholar 

  15. J. A. Barker and D. Henderson, Annu. Rev. Phys. Chem., 23, 439–450 (1972).

    Article  CAS  Google Scholar 

  16. B. J. Alder, D. A. Young, and M. A. Mark, J. Chem. Phys., 56, No. 6, 3013–3029 (1971).

    Article  Google Scholar 

  17. D. Henderson, O. H. Scalise, and W. R. Smith, ibid., 72, No. 4, 2431–2438 (1980).

    Article  CAS  Google Scholar 

  18. J. Largo and J. R. Solano, J. Chem. Phys. B, 108, 10062–10070 (2004).

    Article  CAS  Google Scholar 

  19. Yu. T. Pavlyukhin, J. Struct. Chem., 47,Supplem., S173–S190 (2006).

    Article  CAS  Google Scholar 

  20. R. W. Zwanzig, J. Chem. Phys., 22, No. 8, 1420–1426 (1954).

    Article  CAS  Google Scholar 

  21. B. J. Alder and W. Hoover, in: H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke (eds.), Physics of Simple Liquids [in Russian], North-Holland, Amsterdam (1971), pp. 81–135.

    Google Scholar 

  22. Yu. T. Pavlyukhin, J. Struct. Chem., 41, No. 5, 988–1004 (2000).

    Article  Google Scholar 

  23. Yu. T. Pavlyukhin, ibid., 48, No. 6, 1073–1081 (2007).

    Article  CAS  Google Scholar 

  24. Yu. T. Pavlyukhin, ibid., No. 1, 74–80.

  25. Tabulated numerical data for approximations of the results of modeling are found at http://www.solid.nsc.ru.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. T. Pavlyukhin.

Additional information

Original Russian Text Copyright © 2009 by Yu. T. Pavlyukhin

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 3, pp. 468–477, May–June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlyukhin, Y.T. Thermodynamic perturbation theory of simple liquids. J Struct Chem 50, 446–455 (2009). https://doi.org/10.1007/s10947-009-0067-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-009-0067-2

Keywords

Navigation