Advertisement

Journal of Structural Chemistry

, Volume 50, Issue 1, pp 127–136 | Cite as

Intermolecular interactions and structural dichotomy in 1,3,2,4-benzodithiadiazine crystals

  • I. Yu. BagryanskayaEmail author
  • E. V. Bartashevich
  • D. K. Nikulov
  • Yu. V. Gatilov
  • A. V. Zibarev
Article

Abstract

The intermolecular interactions and structural dichotomy in 1,3,2,4-benzodithiadiazine crystals (1) (the heterocycle is planar for one derivative, but bent for another) were studied in terms of topological analysis of electron density (ED) using QTAIM theory and crystal packing modeling in an OPiX approximation. The intermolecular interactions in crystals 1 can be detected and quantified by means of the critical points (CPs) of ED with (3, −1). The total value of ED at all CPs of a molecule can be correlated with the torsion angle that defines the bending of its heterocycle; the larger the total ED at intermolecular CPs, the smaller the bending of the heterocycle. Thus, under the conditions of weak intermolecular interactions in crystal, molecules 1 preserve the bent conformations typical of the gas phase; strong intermolecular interactions lead to planar conformations.

Keywords

heterocyclic compounds intermolecular interactions crystal packings molecular conformations topological analysis of electron density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Blockhuys, N. P. Gritsan, A. Yu. Makarov, et al., Eur. J. Inorg. Chem., 655–672 (2008).Google Scholar
  2. 2.
    F. Blockhuys, S. L. Hinchley, A. Yu. Makarov, et al., Chem. Eur. J., 7, 3592–3602 (2001).CrossRefGoogle Scholar
  3. 3.
    A. R. Turner, F. Blockhuys, C. Van Alsenoy, et al., Eur. J. Inorg. Chem., 572–581 (2005).Google Scholar
  4. 4.
    A. W. Cordes, M. Hojo, H. Koenig, et al., Inorg. Chem., 25, 1137–1145 (1986).CrossRefGoogle Scholar
  5. 5.
    A. V. Zibarev, Yu. V. Gatilov, and A. O. Miller, Polyhedron, 11, 1137–1141 (1992).CrossRefGoogle Scholar
  6. 6.
    I. Yu. Bagryanskaya, Yu. V. Gatilov, A. Yu. Makarov, et al., Heteroatom. Chem., 10, 113–124 (1999).CrossRefGoogle Scholar
  7. 7.
    A. Yu. Makarov, I. Yu. Bagryanskaya, Gatilov Yu.V. et al., ibid., 12, 563–576 (2001).CrossRefGoogle Scholar
  8. 8.
    A. Yu. Makarov, I. Yu. Bagryanskaya, F. Blockhuys, et al., Eur. J. Inorg. Chem., 77–88 (2003).Google Scholar
  9. 9.
    A. Yu. Makarov, S. N. Kim, N. P. Gritsan, et al., Mendeleev Commun., 14–17 (2005).Google Scholar
  10. 10.
    E. V. Bartashevich, M. R. Abdrakhmanova, V. A. Potemkin, and I. Yu. Bagryanskaya, J. Struct. Chem., 47, No. 1, 114–119 (2006).CrossRefGoogle Scholar
  11. 11.
    R. F. W. Bader, Atoms in Molecules — Quantum Theory, Oxford University Press, Oxford (1990).Google Scholar
  12. 12.
    R. F. W. Bader, Monat. Chem., 136, 819–854 (2005).CrossRefGoogle Scholar
  13. 13.
    R. F. W. Bader et al., AIMPAC: A Suite of Programs for the AIM Theory, McMaster University, Hamilton, Ontario, Canada.Google Scholar
  14. 14.
    A. Gavezzotti, OPiX, A Computer Program Package for the Calculation of Intermolecular Interactions and Crystal Energies, Version of May 2006, University of Milan, Italy.Google Scholar
  15. 15.
    A. Gavezzotti, J. Am. Chem. Soc., 113, 4622–4629 (1991).CrossRefGoogle Scholar
  16. 16.
    A. Gavezzotti and G. Filippini, ibid., 118, 7153–7157 (1996).CrossRefGoogle Scholar
  17. 17.
    J. D. Dunitz, G. Filippini, and A. Gavezzotti, Helv. Chim. Acta, 83, 2317–2335 (2000).CrossRefGoogle Scholar
  18. 18.
    A. Gavezzotti, Cryst. Eng. Commun., 4, 343–347 (2002).Google Scholar
  19. 19.
    J. D. Dunitz and A. Gavezzotti, Cryst. Growth Des., 5, 2180–2189 (2005).CrossRefGoogle Scholar
  20. 20.
    F. H. Allen and O. Kennard, Chem. Des. Autom. News, 8, 31–37 (1993).Google Scholar
  21. 21.
    Cambridge Structural Database, Version 5.27, Univ. Cambridge, UK.Google Scholar
  22. 22.
    S. Fujisawa, K. Ohno, S. Masuda, and Y. Hirada, J. Am. Chem. Soc., 108, 6505–6511 (1986).CrossRefGoogle Scholar
  23. 23.
    M. M. Labes, P. Love, and L. F. Nichols, Chem. Rev., 79, 1–15 (1979).CrossRefGoogle Scholar
  24. 24.
    A. J. Banister and I. B. Gorrell, Adv. Mater., 10, 1415–1429 (1998).CrossRefGoogle Scholar
  25. 25.
    K. Tersago, M. Mandado, C. Van Alsenoy, et al., Chem. Eur. J., 11, 4544–4551 (2005).CrossRefGoogle Scholar
  26. 26.
    K. Tersago, I. Yu. Bagryanskaya, Yu. V. Gatilov, et al., Eur. J. Inorg. Chem., 1958–1965 (2007).Google Scholar
  27. 27.
    J. Saczewski, A. Fontera, M. Gdaniec, et al., Chem. Phys. Lett., 422, 234–239 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. Yu. Bagryanskaya
    • 1
    Email author
  • E. V. Bartashevich
    • 2
  • D. K. Nikulov
    • 2
  • Yu. V. Gatilov
    • 1
  • A. V. Zibarev
    • 1
    • 3
  1. 1.N. N. Vorozhtsov Institute of Organic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Chelyabinsk State UniversityChelyabinskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations