Journal of Structural Chemistry

, Volume 50, Issue 1, pp 78–89 | Cite as

Hydrogen bond lifetime distributions in computer-simulated water

  • V. P. Voloshin
  • Yu. I. NaberukhinEmail author


Various hydrogen bond lifetime distribution functions, used to describe the breaking and formation dynamics of these bonds in a computer experiment, are examined and relationships between them are found. The procedures for calculating these functions by the molecular dynamics method are described and the results for water models of 3456 molecules at 310 K are reported. The peak of short-lived spurious H-bonds, which results from short-time violations of hydrogen bonding criteria induced by dynamic intermolecular vibrations of molecules, prevails in the types of distributions most often referred to in the literature. A special distribution that appears to have not been used before is proposed. Along with short-lived bonds, it manifests long-lived ones whose lifetime is determined by the genuine, or random, hydrogen bond breaking rather than by dynamic. A technique to exclude dynamic effects and reveal the genuine H-bond breaking is proposed. This allows the evaluation of the average lifetime of “true” H-bonds that turns out to exceed 3 ps.


computer water simulation hydrogen bonds hydrogen bond lifetime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. G. Malenkov, J. Struct. Chem., 47,Suppl., pp. S1–S31 (2006).CrossRefGoogle Scholar
  2. 2.
    W. J. Ellison, K. Lamkaouchi, and J. M. Moreau, J. Mol. Liq., 68, Nos. 2/3, 171–279 (1996).CrossRefGoogle Scholar
  3. 3.
    G. G. Malenkov and D. L. Tytik, Method of Molecular Dynamics in Physical Chemistry [in Russian], Tovbin Yu. K. (ed.), Nauka, Moscow (1996), pp. 204–234.Google Scholar
  4. 4.
    F. Stillinger, Adv. Chem. Phys., 31, 1–101 (1975).CrossRefGoogle Scholar
  5. 5.
    D. C. Rapaport, Mol. Phys., 50, 1151–1162 (1983).CrossRefGoogle Scholar
  6. 6.
    H. Tanaka, K. Nakanishi, and N. Watanabe, J. Chem. Phys., 78, 2626–2634 (1983).CrossRefGoogle Scholar
  7. 7.
    A. Geiger, P. Mausbach, J. Schnitker, et al., J. Phys. (Paris), 45, 7–13 (1984).CrossRefGoogle Scholar
  8. 8.
    D. A. Zichi and P. J. Rossky, J. Chem. Phys., 84, 2814–2826 (1986).CrossRefGoogle Scholar
  9. 9.
    A. C. Belch and S. A. Rice, ibid., 86, 5676–5682 (1987).CrossRefGoogle Scholar
  10. 10.
    F. Sciortino and S. L. Fornili, ibid., 90, 2786–2792 (1989).CrossRefGoogle Scholar
  11. 11.
    F. Sciortino, P. H. Poole, H. E. Stanley, and S. Havlin, Phys. Rev. Lett., 64, 1686–1689 (1990).CrossRefGoogle Scholar
  12. 12.
    M. Matsumoto and K. E. Gubbins, J. Chem. Phys., 93, 1981–1991 (1990).CrossRefGoogle Scholar
  13. 13.
    M. Ferrario, M. Haughney, I. R. McDonald, and M. L. Klein, ibid., 93, 5156–5166 (1990).CrossRefGoogle Scholar
  14. 14.
    P. Sindzingre, and M. L. Klein, ibid., 96, 4681–4692 (1992).CrossRefGoogle Scholar
  15. 15.
    S. Saito, and I. Ohmine, ibid., 102, 3566–3579 (1995).CrossRefGoogle Scholar
  16. 16.
    J. Marti, J. A. Padro, and E. Guardia, ibid., 105, 639–649 (1996).CrossRefGoogle Scholar
  17. 17.
    A. Luzar and D. Chandler, Nature, 379, 55–57 (1996); Phys. Rev. Lett., 76, 928–931 (1996).CrossRefGoogle Scholar
  18. 18.
    A. Luzar, Chem. Phys., 258, 267–276 (2000).CrossRefGoogle Scholar
  19. 19.
    A. Luzar, J. Chem. Phys., 113, 10663–10675 (2000).CrossRefGoogle Scholar
  20. 20.
    F. W. Starr, J. K. Nielsen, and H. E. Stanley, Phys. Rev. Lett., 82, 2294–2297 (1999); Phys. Rev. E, 62, 579–587 (2000).CrossRefGoogle Scholar
  21. 21.
    N. Yoshii, S. Miura, and S. Okazaki, Bull. Chem. Soc. Jpn., 72, 151–162 (1999).CrossRefGoogle Scholar
  22. 22.
    G. G. Malenkov and D. L. Tytik, Izv. Ross. Akad. Nauk, Ser. Phys., 60, No. 9, 85–90 (1996).Google Scholar
  23. 23.
    G. G. Malenkov and D. L. Tytik, ibid., 64, 1469–1474 (2000).Google Scholar
  24. 24.
    G. G. Malenkov, D. L. Tytik, and E. A. Zheligovskaya, J. Mol. Liq., 82, 27–38 (1999).CrossRefGoogle Scholar
  25. 25.
    A. Chandra, Phys. Rev. Lett., 85, 768–771 (2000).CrossRefGoogle Scholar
  26. 26.
    S. Chowdhuri and A. Chandra, Phys. Rev. E., 66, 041203 (2002).Google Scholar
  27. 27.
    H. Xu and B. J. Berne, J. Phys. Chem. B., 105, 11929–11932 (2001).CrossRefGoogle Scholar
  28. 28.
    H. Xu, H. A. Stern, and B. J. Berne, ibid., 106, 2054–2060 (2002).CrossRefGoogle Scholar
  29. 29.
    P. Raiteri, A. Laio, and M. Parrinello, Phys. Rev. Lett., 93, 087801 (2004).Google Scholar
  30. 30.
    P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B., 109, 2949–2955 (2005).CrossRefGoogle Scholar
  31. 31.
    M. D. Elola, and B. M. Ladanyi, J. Chem. Phys., 125, 184506/1–13 (2006).Google Scholar
  32. 32.
    I. Hanasaki and A. Nakatani, ibid., 124, 174714/1–9 (2006).Google Scholar
  33. 33.
    H.-S. Lee and M. E. Tuckerman, ibid., 126, 164501 (2007).Google Scholar
  34. 34.
    R. Kumar, J. R. Schmidt, and J. L. Skinner, ibid., 126, 204107 (2007).Google Scholar
  35. 35.
    Yu. M. Kessler and V. E. Petrenko, Water: Structure, State, Solvation. Recent Achievements [in Russian], A. M. Kutepov (ed.), Nauka, Moscow (2003), pp. 6–106.Google Scholar
  36. 36.
    H. Cramer, Mathematical Methods of Statistics, Princeton University Press (1946).Google Scholar
  37. 37.
    L. Boltzmann. Vorlesungen über Gastheorie, 1. Teil. Dritte Auflage. Lpz. (1923).Google Scholar
  38. 38.
    E. S. Shtrauf, Molecular Physics [in Russian], Gostekhizdat, Moscow (1949).Google Scholar
  39. 39.
    V. I. Poltev, T. A. Grokhlina, and G. G. Malenkov, J. Biomol. Struct. Dyn., 2, 413–429 (1984).Google Scholar
  40. 40.
    L. A. Bulavin, N. P. Malomuzh, and K. N. Pankratov, J. Struct. Chem., 47,Suppl., S54–S64 (2006).Google Scholar
  41. 41.
    L. A. Bulavin, T. V. Lokotosh, and N. P. Malomuzh, J. Mol. Liq., 137, 1–24 (2008).CrossRefGoogle Scholar
  42. 42.
    V. E. Petrenko, A. V. Borovikov, M. L. Antimpova, and O. V. Ved, Zhurn. Fiz. Khim., 81, No. 11, 1–6 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Chemical Kinetics and Combustion, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations