Advertisement

Journal of Structural Chemistry

, Volume 50, Issue 1, pp 67–77 | Cite as

NQR and NMR study of hydrogen bonding interactions in anhydrous and monohydrated guanine cluster model: A computational study

  • M. MonajjemiEmail author
  • B. Honarparvar
  • S. M. Nasseri
  • M. Khaleghian
Article

Abstract

In this paper extensive systematic computational study has been carried out to justify hydrogen bonding interactions and their influence on the oxygen, nitrogen and hydrogen NQR and NMR parameters of the anhydrous and monohydrated guanine crystal structures at two different levels, B3LYP and MP2, using 6-311++G** and D95** basis sets. These theoretical data have been compared with experimental NMR and NQR measurements. For further investigation, results of cluster calculation have been compared with that of a single molecule. Our theoretical NQR and NMR parameters of 17O, 15N and 2H atoms of anhydrous and monohydrated guanine exhibited extreme sensitivity to electron distribution around mentioned nuclei caused by cooperative influences of various types of hydrogen bonding interactions. Fortunately, our calculated isotropic shielding values and CS tensors for the 17O and 15N nuclei as well as obtained 14N-NQR parameters are in excellent agreement with experimental data. Therefore, we can undoubtedly conclude that for anhydrous and monohydrated guanine tetrameric clusters including intermolecular interactions, our theoretical estimates are in better agreement with observed experimental values than those in which these interactions have been ignored.

Keywords

nuclear magnetic resonance nuclear quadrupole resonance hydrogen bonding interactions ab initio density functional theory DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Guille and W. Clegg, Acta. Crystallogr., C62, o515–o517 (2006).Google Scholar
  2. 2.
    U. Thewalt, C. E. Bugg, and R. E. Marsh, ibid., B27, 2358–2363 (1971).Google Scholar
  3. 3.
    K. Szczepaniak, and M. Szczesniak, J. Mol. Struct., 156, 29–42 (1987).CrossRefGoogle Scholar
  4. 4.
    S. S. Mallajsyula, A. Datta, and S. K. Pati, Synthetic Metals, 155, 398–401 (2005).CrossRefGoogle Scholar
  5. 5.
    R. Rivelino, V. Ludwig, E. Rissi, and S. Canuto, J. Mol. Struct., 615, 257–266 (2002).CrossRefGoogle Scholar
  6. 6.
    F. Erkoc and S. Erkoc, ibid., 589, 405–411 (2002).Google Scholar
  7. 7.
    R. Blinc, M. Mali, R. Osredkar, et al., J. Chem. Phys., 57, 5087–5093 (1972).CrossRefGoogle Scholar
  8. 8.
    G. Wu, S. Dong, R. Ida, and N. Reen, J. Am. Chem. Soc., 124, 1768–1777 (2002).CrossRefGoogle Scholar
  9. 9.
    M. K. Shukla, S. K. Mishra, A. Kumar, and P. C. Mishra, J. Comp. Chem., 21, 826–846 (2000).CrossRefGoogle Scholar
  10. 10.
    J. P. Kehrer, Toxicology, 140, 43–50 (2000).CrossRefGoogle Scholar
  11. 11.
    J. D. Watson and C. F. H. Crick, Nature, 171, 737/738 (1953).Google Scholar
  12. 12.
    M. J. Duer, Solid State NMR Spectroscopy: Principles, Applications, India Press (2003).Google Scholar
  13. 13.
    J. Mason, Multinuclear NMR, Plenum Press, New York (1987).Google Scholar
  14. 14.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-98, Revision A. 7. Gaussian, Inc., Pittsburgh PA (1998).Google Scholar
  15. 15.
    E. A. C. Lucken, Nuclear Quadrupole Coupling Constant, Academic Press, New York (1969).Google Scholar
  16. 16.
    R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, a Physicochemical Veiw, Pitman, London Press (1983).Google Scholar
  17. 17.
    T. H. Dunning, P. G. Hay, and H. F. Schaefer, Modern Theoretical Chemistry, 3, 1, New York (1976).Google Scholar
  18. 18.
    R. E. Wasylishen, S. S. Mooibroek, and J. B. Macdonald, J. Chem. Phys., 81, 1057–1059 (1984).CrossRefGoogle Scholar
  19. 19.
    A. D. Becke, ibid., 98, 5648 (1993).CrossRefGoogle Scholar
  20. 20.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1998).CrossRefGoogle Scholar
  21. 21.
    J. Leszczynski, J. Phys. Chem. A, 102, 2357 (1998).CrossRefGoogle Scholar
  22. 22.
    J. Z. Hu, J. C. Facelli, D. W. Alderman, et al., J. Am. Chem. Soc., 120, 9863–9869 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. Monajjemi
    • 1
    Email author
  • B. Honarparvar
    • 1
  • S. M. Nasseri
    • 1
  • M. Khaleghian
    • 1
  1. 1.Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations