Advertisement

DFT study of the C-Cl bond dissociation enthalpies and electronic structure of substituted chlorobenzene compounds

  • X. -H. LiEmail author
  • Z. -X. Tang
  • X. -Z. Zhang
Article

Abstract

Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by employing the hybrid density functional theory methods (B3LYP, B3PW1, B3P86) with 6-31G** and 6-311G** basis sets. It was demonstrated that B3P86/6-311G** method is the best method for computing the reliable BDEs for substituted chlorobenzene compounds which contain the C-Cl bond. It was found that the C-Cl BDE depends strongly on a computational method and basis set used. Substitution effect on the C-Cl BDE of substituted chlorobenzene compounds is further discussed. It is shown that the effects of substitution on the C-Cl BDE of substituted chlorobenzene compounds are very insignificant. Frontier orbital energy gap of studied compounds was also investigated. From the data on frontier orbital energies gap, we estimated the relative thermal stability of substituted chlorobenzene compounds.

Keywords

density functional theory bond dissociation enthalpy substituent effect substituted chlorobenzene compounds 

References

  1. 1.
    A. J. Fry, Synthetic Organic Electrochemistry, Wiley, New York, 2nd edn. (1989), ch. 5; D. Peters, in: Organic Electrochemistry, H. Lund and M. M. Baizer (eds.), 3rd edn., Marcel Dekker, New York (1991), 361 p.Google Scholar
  2. 2.
    J.-M. Saveant, Adv. Phys. Org. Chem., 26, 1–4 (1990).CrossRefGoogle Scholar
  3. 3.
    L. Eberson, Electron Transfer Reactions in Organic Chemistry, Springer Verlag, Berlin (1987).Google Scholar
  4. 4.
    B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory., Experiments. and Applications, Academic Press., New York (1999).Google Scholar
  5. 5.
    J. S. Francisco and M. M. Maricq, Advances Photochem., 20, 79–163 (1995).CrossRefGoogle Scholar
  6. 6.
    F.-D. Kopinke, K. Machenzie, R. Koehler, and A. Georgi, Appl. Catalysis A: General., 271, 119–128 (2004).CrossRefGoogle Scholar
  7. 7.
    R. Benassi, C. Bertarini, and F. Taddei, J. Chem. Soc., Perkin Trans., 2, 2263–2269 (1997).Google Scholar
  8. 8.
    A. A. Boyd, B. Noziere, and R. Lesclaux, J. Phys. Chem., 99, 10815–10823 (1995).CrossRefGoogle Scholar
  9. 9.
    B. S. Jursic, J. Mol. Struct. (Theochem.), 366, 103–109 (1996).CrossRefGoogle Scholar
  10. 10.
    X. H. Li, R. Z. Zhang, and X. D. Yang, ibid., 817, 43–47 (2007).CrossRefGoogle Scholar
  11. 11.
    Y. Fu, X. Y. Dong, Y. M. Wang, et al., Chin. J. Chem., 23, 474–480 (2005).CrossRefGoogle Scholar
  12. 12.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-03, Revision B.02, Gaussian Inc., Pittsburgh PA (2003).Google Scholar
  13. 13.
    A. D. Becke, J. Chem. Phys., 98, 5648–5653 (1993).CrossRefGoogle Scholar
  14. 14.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).CrossRefGoogle Scholar
  15. 15.
    B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett., 157, 200–206 (1989).CrossRefGoogle Scholar
  16. 16.
    J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244–13249 (1992).CrossRefGoogle Scholar
  17. 17.
    J. P. Perdew, ibid., 33, 8822–8824 (1986).CrossRefGoogle Scholar
  18. 18.
    Y. R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, Science Press, Beijing (2004).Google Scholar
  19. 19.
    B. S. Jursic, J. Mol. Struct. (Theochem.), 366, 103–108 (1996).CrossRefGoogle Scholar
  20. 20.
    B. S. Jursic, ibid., 422, 253–257 (1998).CrossRefGoogle Scholar
  21. 21.
    B. S. Jursic, Int. J. Quantum. Chem., 62, 291–296 (1997).CrossRefGoogle Scholar
  22. 22.
    A. Korolkovas, Fundamentos da Farmacologia Molecular, Guanabara Dois S. A., Rio de Janeiro (1982).Google Scholar
  23. 23.
    B. Clare, Theor. Chim. Acta, 87, 415–430 (1994).CrossRefGoogle Scholar
  24. 24.
    A. B. F. Da Silva and M. Sc, Thesis. Universidade de São Paulo, Brazil (1985).Google Scholar
  25. 25.
    E. J. Ariens, Drug Design, Academic Press, New York (1971).Google Scholar
  26. 26.
    L. B. Kier, Molecular Orbital Studies in Chemical Pharmacology, Springer, Berlin (1970).Google Scholar
  27. 27.
    A. Burger, Medicinal Chemistry, Wiley-Interscience, New York (1970).Google Scholar
  28. 28.
    D. F. V. Lewis, C. Ioannides, and D. V. Parke, Xenobiotica, 24, 401–408 (1994).CrossRefGoogle Scholar
  29. 29.
    Z. Zhou and R. G. Parr, J. Am. Chem. Soc., 112, 5720–5724 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.College of ScienceHenan University of Science and TechnologyLuoyangP. R. China
  2. 2.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduP. R. China
  3. 3.Department of PhysicsHenan Normal UniversityXinxiangP. R. China

Personalised recommendations