Journal of Structural Chemistry

, Volume 50, Issue 1, pp 27–33 | Cite as

AB initio quantum chemical study of the reaction mechanism of ethynide ion formation in the C2H2/MOH/DMSO system (M = Li, Na, K)

  • E. Yu. LarionovaEmail author
  • N. M. Vitkovskaya
  • V. B. Kobychev
  • N. V. Kaempf
  • A. D. Skitnevskaya
  • B. A. Trofimov


The reaction mechanism of the formation of alkali metal ethynides C2H2 + MOH → C2HM + H2O (M = Li, Na, K) is studied for the gas phase (MP2/6-311++G**//RHF/6-31+G*) and also with regard to the solvent effect of dimethyl sulfoxide (DMSO) included within the continuum model. Among all acetylene complexes with alkali metal hydroxides considered (C2H2·MOH (M = Li, Na, K)), only the complex with KOH is thermodynamically stable in DMSO solution. The formation of this structure results in activation of the acetylene molecule towards electrophilic attack. The formation of alkali metal ethynide in solution is also thermodynamically favorable only in the system with potassium hydroxide of a whole series of metals considered. Further, the ethynide ion can interact in KCCK·HOH systems.


ethynide ion ethynylation reaction mechanism quantum chemical calculation superbasic media 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. A. Trofimov, Zh. Organ. Khim., 31, No. 9, 1368–1387 (1995).Google Scholar
  2. 2.
    B. A. Trofimov, Curr. Organ. Chem., 6, No. 13, 1121–1162 (2002).CrossRefGoogle Scholar
  3. 3.
    B. A. Trofimov, Sovremennye Problemy Organicheskoi Khimii, Vyp. 14, 131–175, SPb (2004).Google Scholar
  4. 4.
    B. A. Trofimov, V. V. Nosyreva, and A.G. Mal’kina, Zh. Organ. Khim., 41, No. 9, 1282–1286 (2005).Google Scholar
  5. 5.
    R. J. Tedeschi, J. Org. Chem., 30, 3045–3049 (1965).CrossRefGoogle Scholar
  6. 6.
    N. M. Vitkovskaya, V. B. Kobychev, N. Yu. Matvienko, et al., Izv. Akad. Nauk, Ser. Khim., No. 8, 1793–1797 (1990).Google Scholar
  7. 7.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  8. 8.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-98, Revision A. 6, Gaussian, Inc., Pittsburgh PA (1998).Google Scholar
  9. 9.
    C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 94, 5523–5527 (1990).CrossRefGoogle Scholar
  10. 10.
    V. B. Kobychev, J. Struct. Chem., 45, No. 1, 20–28 (2004).CrossRefGoogle Scholar
  11. 11.
    V. B. Kobychev, Dokt. Diss. [in Russian], Irkutsk (2004).Google Scholar
  12. 12.
    L. Onsager, J. Am. Chem. Soc., 58, 1486–1493 (1936).CrossRefGoogle Scholar
  13. 13.
    J. G. Kirkwood, J. Chem. Phys., 2, 351–361 (1934).CrossRefGoogle Scholar
  14. 14.
    O. Tapia and O. Goscinski, Mol. Phys., 29, 1653–1661 (1975).CrossRefGoogle Scholar
  15. 15.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefGoogle Scholar
  16. 16.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).CrossRefGoogle Scholar
  17. 17.
    J. Tomasi, B. Mennucci, and E. Cancès, J. Mol. Struct. (Theochem.), 464, 211–226 (1999).CrossRefGoogle Scholar
  18. 18.
    G. I. Almerindo, D. W. Tondo, J. R. Pliego, and Jr., J. Phys. Chem. A, 108, 166–171 (2004).CrossRefGoogle Scholar
  19. 19.
    V. Barone, M. Cossi, and J. Tomasi, J. Chem. Phys., 107, 3210–3221 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. Yu. Larionova
    • 1
    Email author
  • N. M. Vitkovskaya
    • 1
  • V. B. Kobychev
    • 1
  • N. V. Kaempf
    • 1
  • A. D. Skitnevskaya
    • 1
  • B. A. Trofimov
    • 2
  1. 1.Irkutsk State UniversityIrkutskRussia
  2. 2.A. E. Favorsky Irkutsk Institute of Chemistry, Siberian DivisionRussian Academy of SciencesMoscowRussia

Personalised recommendations