Advertisement

Journal of Structural Chemistry

, Volume 50, Issue 1, pp 18–26 | Cite as

Theoretical evaluation of some interactions in the system of acetylene-alkali metal hydroxide-DMSO

  • N. M. VitkovskayaEmail author
  • V. B. Kobychev
  • E. Yu. Larionova
  • I. L. Zaitseva
  • B. A. Trofimov
Article

Abstract

Within the ab initio approach and with the use of density functional theory the formation of solvation shells of nondissociated alkali metals hydroxides of the corresponding cations and the hydroxide ion in dimethyl sulfoxide (DMSO) is studied. Complexes in which the alkali metal environment contains the coordinated acetylene molecule along with solvent molecules are considered. The coordination number of the hydroxide ion in DMSO is shown to be 4. It is demonstrated that solvated cations of alkali metals cannot form π-complexes with the acetylene molecule, whereas the introduction of molecular acetylene into the solvation sphere of nondissociated NaOH and KOH is possible.

Keywords

alkali metals hydroxides cations hydroxide ion dimethyl sulfoxide acetylene coordination solvation ab initio calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Trofimov, S. V. Amosova, A. I. Mikhaleva, et al., in: Fundamental Researches. Chemical Sciences [in Russian], Nauka, Novosibirsk (1977), pp. 174–178.Google Scholar
  2. 2.
    R. J. Tedeschi, in: Encyclopedia of Physical Science and Technology, Vol. 1, Acad. Press Inc., San Diego (1992), pp. 27–65.Google Scholar
  3. 3.
    B. A. Trofimov, Curr. Org. Chem., 6, No. 13, 1121–1162 (2002).CrossRefGoogle Scholar
  4. 4.
    O. A. Tarasova, S. E. Korostova, A. I. Mikhaleva, et al., Khimiya Geterotsikl. Soed., 2, 279 (1983).Google Scholar
  5. 5.
    B. A. Trofimov and A. I. Mikhaleva, N-vinylpyrroles [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  6. 6.
    G. P. Bean, The Synthesis of 1H-Pyrroles, in: The Chemistry of Heterocyclic Compounds, 48, Part. 2; Pyrroles, R. A. Jones (ed), Wiley, New York (1992), pp. 105–130.Google Scholar
  7. 7.
    B. A. Trofimov, in: Modern Problems of Organic Chemistry [in Russian], Vyp. 14., VVM, SPb. (2004), pp. 131–175.Google Scholar
  8. 8.
    J. Tomasi, B. Mennucci, and E. Cancès, J. Mol. Struct. (Theochem.), 464, 211–226 (1999).CrossRefGoogle Scholar
  9. 9.
    G. I. Almerindo, D. W. Tondo, and J. R. Pliego, Jr. J. Phys. Chem. A, 108, 166–171 (2004).CrossRefGoogle Scholar
  10. 10.
    V. B. Kobychev, J. Struct. Chem., 45, No. 1, 20–27 (2004).CrossRefGoogle Scholar
  11. 11.
    V. B. Kobychev, N. M. Vitkovskaya, I. L Zaytseva, et al., J. Struct. Chem., 45, No. 4, 536–543 (2004).Google Scholar
  12. 12.
    V. B. Kobychev, N. M. Vitkovskaya, I. L. Zaytseva, et al., Int. J. Quant. Chem., 88, 542–548 (2002).CrossRefGoogle Scholar
  13. 13.
    V. B. Kobychev, N. M. Vitkovskaya, I. L. Zaytseva, and B. A. Trofimov, ibid., 100, 360–366 (2004).CrossRefGoogle Scholar
  14. 14.
    V. B. Kobychev, N. M. Vitkovskaya, and B. A. Trofimov, J. Struct. Chem., 49, 230–237 (2008).CrossRefGoogle Scholar
  15. 15.
    N. M. Vitkovskaya, E. Yu. Larionova, V. B. Kobychev, Int. J. Quantum Chem., 108, (in press) (DOI: 10.1002/qua.21639) (2008).Google Scholar
  16. 16.
    V. B. Kobychev, N. M. Vitkovskaya, E. Yu. Shmidt, et al., J. Struct. Chem., 48,Suppl, S107–S116 (2007).Google Scholar
  17. 17.
    N. M. Vitkovskaya, T. É. Moskovskaya, and B. A. Trofimov, Izv. Akad. Nauk SSSR, Ser. Khim., 891–895 (1982).Google Scholar
  18. 18.
    N. M. Vitkovskaya, T. É. Moskovskaya, V. G. Bernshtein, and B. A. Trofimov, ibid., 1474–1476.Google Scholar
  19. 19.
    N. M. Vitkovskaya, F. S. Dubnikova, O. Yu. Dolgunicheva, et al., Zh. Obshch. Khim., 60, 411–413 (1990).Google Scholar
  20. 20.
    I. V. Guchik, Yu. L. Frolov, V. A. Shagun, et al., J. Struct. Chem., 45, 41–47 (2004).CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-98, Revision A.6, Gaussian, Inc., Pittsburgh PA (1998).Google Scholar
  22. 22.
    Yu. L. Frolov, I. V. Guchik, V. A. Shagun, et al., J. Struct. Chem., 44, 927–931 (2003).CrossRefGoogle Scholar
  23. 23.
    E. Lange and K. P. Mishenko, Ztschr. Phys. Chem. A, 149, 1–41 (1930).Google Scholar
  24. 24.
    Yu. L. Frolov, I. V. Guchik, V. A. Shagun, and A. V. Vashenko, J. Struct. Chem., 46, 979–984 (2005).CrossRefGoogle Scholar
  25. 25.
    A. Vegiri and S. Shevkunov, J. Chem. Phys., 113, 8521–8530 (2000).CrossRefGoogle Scholar
  26. 26.
    A. M. Vasil’tsov, S. V. Amosova, and B. A. Trofimov, Izv. Akad. Nauk SSSR, Ser. Khim., 1785–1791 (1987).Google Scholar
  27. 27.
    J. E. Carpenter and F. Weinhold, J. Mol. Struct. (Theochem), 169, 41–62 (1988).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. M. Vitkovskaya
    • 1
    Email author
  • V. B. Kobychev
    • 1
  • E. Yu. Larionova
    • 1
  • I. L. Zaitseva
    • 1
  • B. A. Trofimov
    • 2
  1. 1.Irkutsk State UniversityIrkutskRussia
  2. 2.A. E. Favorsky Irkutsk Institute of Chemistry, Siberian DivisionRussian Academy of SciencesMoscowRussia

Personalised recommendations