Advertisement

Journal of Structural Chemistry

, Volume 50, Issue 1, pp 1–9 | Cite as

Electronic structure of tungsten carbonitrides WC1−x N x

  • D. V. Suetin
  • I. R. Shein
  • A. L. IvanovskiiEmail author
Article

Abstract

A full potential FLAPW-GGA method is used for the first time to study the electronic structure of hexagonal solid solutions of tungsten carbonitrides WC1−x N x (0 ≤ x ≤ 0.5) and to calculate their equilibrium structural parameters, density, cohesion energy, and coefficients of low-temperature heat capacity and Pauli paramagnetic susceptibility. They are discussed in comparison with similar values for initial binary phases: WC and WN and also hypothetical solid solutions WB0.5C0.5 and WB0.5N0.5.

Keywords

tungsten carbonitrides WC1−xNx electronic properties FLAPW-GGA simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Toth, Transition Metal Carbides and Nitrides, Academic, New York (1971).Google Scholar
  2. 2.
    G. V. Samsonov, G. Sh Upadhaya, and V. S. Neshpor, Physical Material Science of Carbides [in Russian], Naukova Dumka, Kiev (1974).Google Scholar
  3. 3.
    T. Oyama (ed.), in: The Chemistry of Transition Metal Carbides and Nitrides, Blackie Acad. Prof., London (1996).Google Scholar
  4. 4.
    V. A. Gubanov, A. L. Ivanovskii, and V. P. Zhukov, Electronic Structure of Refractory Carbides and Nitrides. 2nd Ed., Cambridge University Press, Cambridge (2005).Google Scholar
  5. 5.
    A. L. Ivanovskii, V. A. Gubanov, and A. V. Bekshaev, Neorgan. Mater., 24, No. 10, 1654–1660 (1988).Google Scholar
  6. 6.
    V. M. Cherkashenko, S. Z. Nazarova, A. I. Gusev, and A. L. Ivanovskii, J. Struct. Chem., 42, No. 6, 1102–1124 (2001).CrossRefGoogle Scholar
  7. 7.
    A. L. Ivanovskii, V. A. Gubanov, and G. P. Shveikin, Zh. Neorg. Khim., 24, No. 3, 629–641 (1979).Google Scholar
  8. 8.
    A. L. Ivanovskii and G. P. Shveikin, Phys. Stat. Sol., B181, No. 2, 251–289 (1994).Google Scholar
  9. 9.
    V. M. Zainullina and A. L. Ivanovskii, Zh. Neorg. Khim., 47, No. 10, 1501–1505 (2002).Google Scholar
  10. 10.
    I. R. Shein, K. I. Shein, N. I. Medvedeva, and A. L. Ivanovskii, Phys. Stat. Sol., B244, No. 9, 3198–3205 (2007).Google Scholar
  11. 11.
    A. S. Kurlov and A. I. Gusev, Usp. Khim., 75, No. 7, 687–708 (2006).Google Scholar
  12. 12.
    N. Asada, J. Jpn. Soc. Powder-Powder Metall., 47, No. 5, 496–501 (2000).Google Scholar
  13. 13.
    G. Gogova, K. Gesheva, and A. Veneva, Mater. Lett., 35, Nos. 5/6, 351–356 (1998).CrossRefGoogle Scholar
  14. 14.
    P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna Univ. Technol., Vienna (2001).Google Scholar
  15. 15.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, No. 8, 3865–3868 (1996).CrossRefGoogle Scholar
  16. 16.
    P. E. Blochl, O. Jepsen, and O. K. Anderson, Phys. Rev., B49, No. 23, 16223–16233 (1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • D. V. Suetin
    • 1
  • I. R. Shein
    • 1
  • A. L. Ivanovskii
    • 1
    Email author
  1. 1.Institute of Chemistry of Solids, Ural DivisionRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations