Skip to main content
Log in

Study of the temperature effect on IR spectra of crystalline amino acids, dipeptids, and polyamino acids. III. α-Glycylglycine

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The IR spectra of α-glycylglycine (H3 +N-CH2-CO-NH-CH2-COO) are studied in the temperature range of 93 to 413 K. Changes in the spectra due to temperature variation are correlated with the previously obtained X-ray diffraction data on anisotropic compression of the structure and changes in the parameters of hydrogen bonding. Changes in the vibrational frequencies of NH +3 and COO groups in the IR spectrum of α-glycylglycine are compared to changes in the vibrational frequencies of the same groups in the IR spectra of polymorphs of glycine, L- and DL-serine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Chirgadze, Infrared Spectra and the Structure of Polypeptides and Proteins [in Russian], Mir, Moscow (1965).

    Google Scholar 

  2. C. B. Anfinsen, J. T. Edsall, and F. M. Richard, Adv. Protein Chem., 86, 370 (1986).

    Google Scholar 

  3. J. D. Bernal, Z. Kristallogr., 78, 363 (1931).

    CAS  Google Scholar 

  4. A. B. Biswas, E. W. Hughes, B. D. Sharma, and J. N. Wilson, Acta Crystallogr., 24B, 40 (1968).

    Google Scholar 

  5. A. Kvick, A. R. Al-Karaghouli, and T. F. Koetzle, ibid., 33B, 3796 (1977).

    Google Scholar 

  6. A. Kvick, T. F, Koetzle and E. D. Stevens, J. Chem. Phys., 71, 173 (1979).

    Article  CAS  Google Scholar 

  7. H. C. Freeman, G. L. Paul, and T. M. Sabine, Acta Crystallogr., 26B, 925 (1970).

    Google Scholar 

  8. T. N. Drebushchak, E. V. Boldyreva, and E.N. Kolesnik, J. Struct. Chem., 47, No. 1, 106–113 (2006).

    Article  CAS  Google Scholar 

  9. T. N. Drebushchak, E. N. Kolesnik, and E. V. Boldyreva, Z. Kristallogr., 221, 128 (2006).

    Article  CAS  Google Scholar 

  10. S. A. Moggach, D. R. Allan, S. Parsons, and L. Sawyer, Acta Crystallogr., 62B, 310 (2006).

    Google Scholar 

  11. F. Elmi and N. L. Madipour, J. Phys. Chem., 109A, 1729 (2005).

    Google Scholar 

  12. T. Kameda, N. Takeda, S. Ando, et al., Biopolymers, 45, 333 (1998).

    Article  CAS  Google Scholar 

  13. V. A. Drebushchak, Yu. A. Kovalevskaya, I. E. Paukov, and E. V. Boldyreva, J. Therm. Anal. Cal., 85, 485 (2006).

    Article  CAS  Google Scholar 

  14. A. M. Dwivedi and V. D. Gupta, Biopolymers, 11, 2091 (1972).

    Article  CAS  Google Scholar 

  15. P. Lagant, G. Vertogen, M. H. Loucheux-Lefebvre, and G. Fleury, ibid., 22, 1267 (1983).

    Article  CAS  Google Scholar 

  16. C. Destrade, E. Dupart, M. Joussot-Dubien, and C. Garrigou-Lagrange, Can. J. Chem, 52, 2590 (1974).

    Article  CAS  Google Scholar 

  17. G. Fisher X. Cao N. Cox, and M. Francis, J. Chem. Phys., 313, 39 (2005).

    Article  CAS  Google Scholar 

  18. D. Chakraborty and S. Manorgan, ibid., 101A, 6964 (1997).

    Google Scholar 

  19. S. V. Goryainov, E. V. Boldyreva, M. B. Smirnov, et al., Vibr. Spectr., (submitted).

  20. G. Sieler, R. Schweitzer-Stenner, J. S. W. Holtz, et al., J. Phys. Chem., 103B, 372 (1999).

    Google Scholar 

  21. P. C. Painter, M. M. Coleman, and J. L. Koenig. The Theory of Vibrational Spectroscopy and its Application to Polymeric Materials, McGraw-Hill, New York (1982).

    Google Scholar 

  22. G. B. Chernobai, Yu. A. Chesalov, E. B. Burgina, et al., J. Struct. Chem., 48, No. 2, 332–339 (2007).

    Article  CAS  Google Scholar 

  23. Yu. A. Chesalov, G. B. Chernobai, and E. V. Boldyreva, ibid., 49, No. 4, 627–638 (2008).

    Article  CAS  Google Scholar 

  24. L. J. Bellamy, Infrared Spectra of Complex Molecules, Methuen, London (1958).

    Google Scholar 

  25. S. Jarmelo, I. Reva, P. R. Carey, and R. Fausto, Vibr. Spectr., 43, 395 (2007).

    Article  CAS  Google Scholar 

  26. C. Murli, S. M. Sharma, S. Karmakar, and S. K. Sikka, Physica B, 339, No. 1, 23 (2003).

    Article  CAS  Google Scholar 

  27. K Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Theory and Applications in Inorganic Chemistry, Wiley, New York (1963).

    Google Scholar 

  28. M. Kakihana, T. Nagumo, M. Okamoto, and H. Kakihana, J. Phys. Chem., 91, No. 24, 6128 (1987).

    Article  CAS  Google Scholar 

  29. T. N. Drebushchak, E. V. Boldyreva, Yu. V. Seretkin, and E. S. Shutova, J. Struct. Chem., 43, No. 5, 835–842 (2002).

    Article  CAS  Google Scholar 

  30. E. V. Boldyreva, E. N. Kolesnik, T. N. Drebuschak, et al., Z. Kristallogr., 220, 58 (2005).

    Article  CAS  Google Scholar 

  31. E. V. Boldyreva, E. N. Kolesnik, T. N. Drebuschak, et al., ibid., 221, 150 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Chesalov.

Additional information

Original Russian Text Copyright © 2008 by Yu. A. Chesalov, G. B. Chernobai, and E. V. Boldyreva

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 6, pp. 1051–1060, November–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesalov, Y.A., Chernobai, G.B. & Boldyreva, E.V. Study of the temperature effect on IR spectra of crystalline amino acids, dipeptids, and polyamino acids. III. α-Glycylglycine. J Struct Chem 49, 1012–1021 (2008). https://doi.org/10.1007/s10947-008-0173-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-008-0173-6

Keywords

Navigation