Skip to main content
Log in

DFT quantum-chemical calculations of nitrogen oxide chemisorption and reactivity on the Cu(100) surface

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A DFT quantum-chemical study of NO adsorption and reactivity on the Cu20 and Cu16 metal clusters showed that only the molecular form of NO is stabilized on the copper surface. The heat of monomolecular adsorption was calculated to be ΔH m = −49.9 kJ/mol, while dissociative adsorption of NO is energetically unfavorable, ΔH d = + 15.7 kJ/mol, and dissociation demands a very high activation energy, E a = + 125.4 kJ/mol. Because of the absence of NO dissociation on the copper surface, the formation mechanism of the reduction products, N2 and N2O, is debatable since the surface reaction ultimately leads to N-O bond cleavage. As the reaction occurs with a very low activation energy, E a = 7.3 kJ/mol, interpretation of the NO direct reduction mechanism is both an important and intriguing problem because the binding energy in the NO molecule is high (630 kJ/mol) and the experimental studies revealed only physically adsorbed forms on the copper surface. It was found that the formation mechanism of the N2 and N2O reduction products involves formation (on the copper surface) of the (OadN-NOad) dimer intermediate that is chemisorbed via the oxygen atoms and characterized by a stable N-N bond (r N-N ∼1.3 Å). The N-N binding between the adsorbed NO molecules occurs through electron-accepting interaction between the oxygen atoms in NO and the metal atoms on the “defective” copper surface. The electronic structure of the (OadN-NOad) surface dimer is characterized by excess electron density (ON-NO)δ− and high reactivity in N-Oad bond dissociation. The calculated activation energy of the destruction of the chemisorbed intermediate (OadN-NOad) is very low (E a = 5–10 kJ/mol), which shows that it is kinetically unstable against the instantaneous release of the N2 and N2O reduction products into the gas phase and cannot be identified by modern experimental methods of metal surface studies. At the same time, on the MgO surface and in the individual (Ph3P)2Pt(O2N2) complex, a stable (OadN-NOad) dimer was revealed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Brown and D. A. King, J. Phys. Chem. B, 104, No. 12, 2578–595 (2000).

    Article  CAS  Google Scholar 

  2. S. Haq, A. Carew, and R. Raval, J. Catal., 221, No. 1, 204–212 (2004).

    Article  CAS  Google Scholar 

  3. R. Burch, S. T. Daniells, and P. Hu, J. Chem. Phys., 121, No. 6, 2737–2745(2004).

    Article  CAS  Google Scholar 

  4. W. A. Brown, P. Gardner, and D. A. King, J. Phys. Chem., 99, No. 18, 7065–7074 (1995).

    Article  CAS  Google Scholar 

  5. A. Snis and I. Panas, Chem. Phys., 221, 1–10 (1997).

    Article  CAS  Google Scholar 

  6. I. I. Zakharov, V. F. Anufrienko, O. I. Zakharova, et al., J. Struct. Chem., 46, No. 2, 2123–219 (2005).

    Article  Google Scholar 

  7. N. G. Maksimov, V. K. Dudchenko, V. F. Anufrienko, et al., Teor. Éksp. Khim., 14, No. 1, 53–58 (1978).

    CAS  Google Scholar 

  8. I. I. Zakharov, Z. R. Ismagilov, S. Ph. Ruzankin, et al., J. Phys. Chem. C, 111, No. 7, 3080–3089 (2007).

    Article  CAS  Google Scholar 

  9. L. Curruti, E. Modon, E. Guglielminotti, and E. Borello, J. Chem. Soc., Faraday Trans. I, 7, No. 4, 729 (1974).

    Article  Google Scholar 

  10. R. Ramprasad, K. C. Hass, W. F. Schneider, and J. B. Adams, J. Phys. Chem. B, 101, No. 35, 6903–6913 (1997).

    Article  CAS  Google Scholar 

  11. Y. Zhang, Y. Sun, A. Cao, et al., J. Mol. Struct. (Theochem), 623, 245–251 (2003).

    Article  CAS  Google Scholar 

  12. S. Bhaduri, B. F. G. Jonson, A. Pickard, et al., J. Chem. Soc., Chem. Commun., 1977, 354–356 (1977).

    Article  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 92/DFT, Revision G.2, Gaussian Inc., Pittsburgh (1993).

    Google Scholar 

  14. R. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 270–310 (1985).

    Article  CAS  Google Scholar 

  15. Density Functional Theory, in: NATO ASI Series, Series B: Physics, E. K. U. Gross and R. M. Drezier (eds.), Plenum, New York (1995).

    Google Scholar 

  16. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  17. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–797 (1988).

    Article  CAS  Google Scholar 

  18. I. I. Zakharov, I. N. Shapovalova, O. I. Zakharova, et al., J. Struct. Chem., 42, No. 6, 888–893 (2001).

    Article  CAS  Google Scholar 

  19. A. Bogicevic and K. C. Hass, Surf. Sci., 506, L237–L242 (2000).

    Google Scholar 

  20. M. Perez-Jigato, D. A. King, and A. Yochimori, Chem. Phys. Lett., 300, 639–644 (1999).

    Article  Google Scholar 

  21. C. G. P. M. Bernardo and J. A. N. F. Gomes, J. Mol. Struct. (Theochem), 629, No. 1, 251–261 (2003).

    Article  CAS  Google Scholar 

  22. M. J. S. Spencer and G. L. Nyberg, Mol. Simul., 28, Nos. 8/9, 807–825 (2004).

    Google Scholar 

  23. M. A. Karolewski, Nucl. Instr. Meth., B254, 59–68 (2007).

    Google Scholar 

  24. D. A. Trubitsyn, V. A. Zakharov, and I. I. Zakharov, J. Mol. Catal. A: Chem., 270, 164–170 (2007).

    Article  CAS  Google Scholar 

  25. M. Iwamoto, H. Yahiro, Y. Mine, and S. Kagawa, Chem. Lett., No. 2, 213–216 (1989).

  26. M. Iwamoto and H. Hamada, Catal. Today, 10, 57–71 (1991).

    Article  CAS  Google Scholar 

  27. S. N. Orlik, Teor. Éksp. Khim., 37, No. 3, 133–157 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Zakharov.

Additional information

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 48, Supplement, pp. S155–S168, 2007.

Original Russian Text Copyright © 2007 by I. I. Zakharov, A. V. Suvorin, A. I. K lbasin, and O. I. Zakharova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, I.I., Suvorin, A.V., Kolbasin, A.I. et al. DFT quantum-chemical calculations of nitrogen oxide chemisorption and reactivity on the Cu(100) surface. J Struct Chem 48 (Suppl 1), S147–S159 (2007). https://doi.org/10.1007/s10947-007-0158-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0158-x

Keywords

Navigation