Skip to main content
Log in

Electronic structure of crystalline uranium nitride: LCAO DFT calculations

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The results of electronic structure calculations performed for the first time for crystalline uranium nitride and using a LCAO basis are discussed. For calculations we used the density functional method with the PW91 exchange correlation potential and a variety of relativistic core potentials for the uranium atom. The calculated atomization energy of the crystal agrees well with the experimental data and with the results of calculations with the plane wave basis. It is shown that a chemical bond in crystalline uranium nitride is a metal covalent bond. The metal component of the bond is due to the 5f electrons localized on the uranium atom and having energies near the Fermi level and the bottom of the conduction band. The covalent component of the chemical bond results from an overlap between the uranium 6d and 7s valence orbitals and the nitrogen 2p atomic orbitals. Inclusion of the 5f electrons in the core of the uranium atom introduces relatively minor changes in the calculated binding energy and electron density distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inorganic Crystal Structure Database: http://icsd.ill.fr/icsd/index.html.

  2. X. Cao and M. Dolg, Coord. Chem. Revs., 250, Nos. 7/8, 900 (2006).

    Article  CAS  Google Scholar 

  3. M. Freyss, T. Petit, and L.-P. Crocombette, J. Nucl. Mater., 347, Nos. 1/2, 44 (2005).

    Article  CAS  Google Scholar 

  4. Y. Yun, H. Kim, and K. Park, Nucl. Eng. Technol., 37, No. 3, 293 (2005).

    CAS  Google Scholar 

  5. R. Laskowski, G. K. H. Madsen, P. Blaha, and K. Schwartz, Phys. Rev. B, 69, No. 14, R140408 (2004).

  6. S. L. Dudarev, G. A. Botton, S. Yu. Savrasov, et al., Phys. Status Solidi (a), 166, No. 1, 429 (1998).

    Article  CAS  Google Scholar 

  7. J. C. Boettger and A. K. Ray, Int. J. Quant. Chem., 90, Nos. 4/5, 1470 (2002).

    Article  CAS  Google Scholar 

  8. K. N. Kudin, G. E. Scuseria, and R. L. Martin, Phys. Rev. Lett., 89, No. 26, 266402 (2002).

    Google Scholar 

  9. J. P. Crocombette, F. Jollet, T. Nga, and T. Petit, Phys. Rev. B, 64, No. 10, 104107 (2001).

  10. M. S. Brooks, J. Phys. F: Met. Phys., 14, No. 3, 639 (1984).

    Article  CAS  Google Scholar 

  11. D. Sedmidubsky, R. J. M. Konings, and P. Novak, J. Nucl. Mater., 344, Nos. 1–3, 40 (2005).

    Article  CAS  Google Scholar 

  12. K. Kurosaki, K. Yano, K. Yamada, et al., J. Alloys Comp., 311, No. 2, 305 (2000).

    Article  CAS  Google Scholar 

  13. E. A. Kotomin, Yu. A. Mastrikov, Yu. F. Zhukovskii, et al., Phys. Status Solidi (c), 4, No. 3, 1193 (2007).

    Article  CAS  Google Scholar 

  14. E. A. Kotomin, R. W. Grimes, Y. Mastrikov, and N. J. Ashley, J. Phys.: Cond. Matt., 19, No. 10, 106208 (2007).

    Google Scholar 

  15. R. A. Evarestov, Quantum Chemistry of Solids. The LCAO First Principles Treatment of Crystals, Springer Series in Solid State Sciences, Vol. 153, Springer (2007).

  16. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, No. 1, 270, 284, 299 (1985).

    Article  CAS  Google Scholar 

  17. W. Kuchle, M. Dolg, H. Stoll, and H. Preuss, ibid., 100, No. 10, 7535 (1994).

    Article  Google Scholar 

  18. X. Cao, M. Dolg, and H. Stoll, ibid., 118, No. 2, 487 (2003).

    Article  CAS  Google Scholar 

  19. W. C. Ermler, R. B. Ross, and P. A. Christiansen, Int. J. Quant. Chem., 40, No. 6, 829 (1991).

    Article  CAS  Google Scholar 

  20. I. D. Prodan, G. E. Scuseria, and R. L. Martin, Phys. Rev. B, 73, No. 4, 045104 (2006).

  21. http://www.emsl.pnl.gov/forms/basisform.html.

  22. N. S. Mosyagin, A. V. Titov, and A. V. Tulub, Phys. Rev. A, 50, No. 3, 2239 (1994).

    Article  CAS  Google Scholar 

  23. A. V. Titov and N. S. Mosyagin, Int. J. Quant. Chem., 71, No. 5, 359 (1999).

    Article  Google Scholar 

  24. N. S. Mosyagin, E. Eliav, A. V. Titov, and U. Kaldor, J. Phys. B, 33, No. 4, 667 (2000).

    Article  CAS  Google Scholar 

  25. M. J. Frisch et al., Gaussian-03, Revision C.02, Gaussian, Inc., Wallingford, CT (2004); http://www.gaussian.com/citation.html.

    Google Scholar 

  26. http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html.

  27. M. Ernzerhof and G. E. Scuseria, J. Chem. Phys., 110, No. 11, 5029 (1999).

    Article  CAS  Google Scholar 

  28. M. Marutzky, U. Barkow, J. Schoenes, and R. Troc, J. Magn. Magn. Mater., 299, No. 4, 225 (2006).

    Article  CAS  Google Scholar 

  29. P. R. Norton, R. L. Tapping, D. K. Creber, and W. J. L. Buyers, Phys. Rev. B, 21, No. 16, 2572 (1980).

    Article  CAS  Google Scholar 

  30. R. Troc, J. Solid State Chem., 13, No. 1, 14 (1975).

    Article  CAS  Google Scholar 

  31. http://www.crystal.unito.it/Basis-Sets/Ptable.html.

  32. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, No. 23, 13244 (1992).

  33. H. Matzke, in: Diffusion Processes in Nuclear Materials, Elsevier, Amsterdam (1992).

    Google Scholar 

  34. M. Dolg and J. Jang, Theor. Chem. Acc., 113, No. 4, 212 (2005).

    Article  Google Scholar 

  35. A. G. Petukhov, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B, 53, No. 8, 4324 (1996).

    Article  CAS  Google Scholar 

  36. A. Moritz, X. Cao, M. Dolg, and J. Jang, Theor. Chem. Acc., 117, No. 4, 473 (2007).

    Article  CAS  Google Scholar 

  37. R. Dovesi, V. R. Saunders, C. Roett, et al., Crystal 06, Users Manual, Univ. Turin (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Évarestov.

Additional information

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 48, Supplement, pp. S132–S141, 2007.

Original Russian Text Copyright © 2007 by R. A. Évarestov, A. I. Panin, and M. V. Losev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Évarestov, R.A., Panin, A.I. & Losev, M.V. Electronic structure of crystalline uranium nitride: LCAO DFT calculations. J Struct Chem 48 (Suppl 1), S125–S133 (2007). https://doi.org/10.1007/s10947-007-0155-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0155-0

Keywords

Navigation