Skip to main content
Log in

Mechanism of olefin epoxidation with transition metal peroxo complexes: DFT study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Using density functional calculations over the last decade led to considerable progress in understanding the mechanism of olefin epoxidation with Ti, V, Mo, W, and Re peroxo complexes. According to calculations, the reaction occurs by direct electrophilic transfer of one of the atoms of the peroxo group to the olefin. The alternative stepwise mechanism, which has been discussed for a long time and suggested the formation of a metallocyclic intermediate, is characterized by higher activation barriers than direct transfer. The electrophilic character of the direct transfer of oxygen was interpreted at the level of molecular orbital analysis as interaction between the HOMO of the olefin π(C-C) and the LUMO of the peroxo group σ*(O-O). The factors determining the activity of various metal complexes in epoxidation were examined in relation to the ligand environment and the structure of the peroxo group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Jørgensen, Chem. Rev., 89, No. 3, 431–457 (1989).

    Google Scholar 

  2. R. A. Sheldon, Catalytic Oxidations with Hydrogen Peroxides as Oxidants, Kluwer, Rotterdam (1992).

    Google Scholar 

  3. E. N. Jacobsen, Catalytic Asymmetric Synthesis, I. Ojima (ed.), VCH, New York (1993), p. 159.

    Google Scholar 

  4. W. Adam, W. Malisch, K. J. Roschmann, C. R. Saha-Möller, and W. A. Schenk, J. Organomet. Chem., 661, 3–16 (2002).

    CAS  Google Scholar 

  5. A. Batler, M. J. Clague, and G. E. Meister, Chem. Rev., 94, No. 3, 625–638 (1994).

    Google Scholar 

  6. H. Mimoun, I. S. De Roch, and L. Sajus, Tetrahedron, 26, 37–50 (1970).

    CAS  Google Scholar 

  7. M. H. Dickman and M. T. Pope, Chem. Rev., 94, No. 3, 569–584 (1994).

    CAS  Google Scholar 

  8. T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 102, 5974–5976 (1980).

    CAS  Google Scholar 

  9. K. B. Sharpless, Angew. Chem., Int. Ed., 41, No. 12, 2024–2032 (2002).

    CAS  Google Scholar 

  10. M. G. Finn and K. B. Sharpless, J. Am. Chem. Soc., 113, 113–126 (1991).

    CAS  Google Scholar 

  11. B. S. Lane and K. Burgess, Chem. Rev., 103, No. 7, 2457–2473 (2003).

    CAS  Google Scholar 

  12. B. Notari, Adv. Catal., 41, 253–334 (1996).

    CAS  Google Scholar 

  13. C. C. Romão, F. E. Kühn, and W. A. Herrmann, Chem. Rev., 97, 3197–3246 (1997).

    Google Scholar 

  14. F. E. Kühn, A. Scherbaum, and W. A. Herrmann, J. Organomet. Chem., 689, No. 24, 4149–4164 (2004).

    Google Scholar 

  15. N. Rösch, P. Gisdakis, I. V. Yudanov, and C. Di Valentin, Mechanistic Aspects of Transition Metal-Catalyzed Olefin Epoxidation from Density Functional Studies, W. Adam (ed.), in: Peroxide Chemistry: Mechanistic and Preparative Aspects of Oxygen Transfer, Wiley-VCH, Weinheim (2000), pp. 601–619.

    Google Scholar 

  16. N. Rösch, C. Di Valentin, and I. V. Yudanov, Mechanism of Olefin Epoxidation by Transition Metal Peroxo Compounds, F. Maseras and A. Lledós (eds.), in: Computational Modeling of Homogeneous Catalysis, Kluwer, Dordrecht (2002), pp. 289–324.

    Google Scholar 

  17. D. V. Deubel, G. Frenking, P. Gisdakis, et al., Acc. Chem. Res., 37, No. 9, 645–652 (2004).

    CAS  Google Scholar 

  18. H. Mimoun, Angew. Chem., Int. Ed. Engl., 21, 734–750 (1982).

    Google Scholar 

  19. R. A. Sheldon and J. A. Van Doorn, J. Organomet. Chem., 94, 115–129 (1975).

    CAS  Google Scholar 

  20. M. J. Broadhurst, J. M. Brown, and R. A. John, Angew. Chem., Int. Ed. Engl., 22, 47/48 (1983).

    Google Scholar 

  21. H. Mimoun, M. Mignard, P. Brechot, and L. Saussine, J. Am. Chem. Soc., 108, No. 13, 3711–3717 (1986).

    CAS  Google Scholar 

  22. K. B. Sharpless, J. M. Townsend, and D. R. Williams, ibid., 94, No. 1, 295/296 (1972).

    Google Scholar 

  23. G. Amato, A. Arcoria, F. P. Ballistreri, et al., J. Mol. Catal., 37, 165–175 (1986).

    CAS  Google Scholar 

  24. S. Camprestini, V. Conte, F. Di Furia, et al., J. Org. Chem., 53, 5721–5724 (1988).

    Google Scholar 

  25. E. P. Talsi, K. V. Shalyaev, and K. I. Zamaraev, J. Mol. Catal., 83, 347–366 (1993).

    CAS  Google Scholar 

  26. K. F. Purcell, J. Organomet. Chem., 252, 181–185 (1983).

    CAS  Google Scholar 

  27. K. F. Purcell, Organometallics, 4, 509–514 (1985).

    CAS  Google Scholar 

  28. R. D. Bach, G. J. Wolber, and B. A. Coddens, J. Am. Chem. Soc., 106, 6098/6099 (1984).

    Google Scholar 

  29. K. A. Jørgensen and R. Hoffmann, Acta Chem. Scand. B, 40, 411–419 (1986).

    Google Scholar 

  30. K. A. Jørgensen, R. A. Wheeler, and R. Hoffmann, J. Am. Chem. Soc., 109, 3240–3246 (1987).

    Google Scholar 

  31. K. A. Jørgensen and P. Swanstrøm, Acta Chem. Scand., 46, 82–86 (1992).

    Google Scholar 

  32. K. A. Jørgensen, J. Chem. Soc. Perkin Trans., 2, 117–124 (1994).

    Google Scholar 

  33. M. J. Filatov, K. V. Shalyaev, and E. P. Talsi, J. Mol. Catal., 87, L5–L9 (1994).

    CAS  Google Scholar 

  34. A. A. Voityuk and N. Rösch, J. Phys. Chem. A, 104, No. 17, 4089–4094 (2000).

    CAS  Google Scholar 

  35. A. D. Becke, J. Chem. Phys., 98, 5648–5651 (1993).

    CAS  Google Scholar 

  36. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    CAS  Google Scholar 

  37. A. Bagno, V. Conte, F. Di Furia, and S. Moro, J. Phys. Chem. A, 101, No. 25, 4637–4640 (1997).

    CAS  Google Scholar 

  38. P. Macchi, A. J. Schultz, F. K. Larsen, and B. B. Iversen, J. Phys. Chem. A, 105, No. 40, 9231–9242 (2001).

    CAS  Google Scholar 

  39. F. R. Sensato, Q. B. Cass, E. Longo, et al., Inorg. Chem., 40, 6022–6025 (2001).

    CAS  Google Scholar 

  40. F. R. Sensato, R. Custodio, Q. B. Cass, et al., J. Mol. Struct. (Theochem), 589/590, 251–264 (2002).

    Google Scholar 

  41. Y. D. Wu and D. K. W. Lai, J. Org. Chem., 60, 673–680 (1995).

    CAS  Google Scholar 

  42. Y. D. Wu and D. K. W. Lai, J. Am. Chem. Soc., 117, 11327–11336 (1995).

    Google Scholar 

  43. M. Neurock and L. E. Manzer, Chem. Commun., No. 10, 1133/1134 (1996).

  44. E. Karlsen and K. Schöffel, Catal. Today, 32, 107–114 (1996).

    CAS  Google Scholar 

  45. G. N. Vayssilov and R. A. van Santen, J. Catal., 175, No. 2, 170–174 (1998).

    CAS  Google Scholar 

  46. G. M. Zhidomirov, A. L. Yakovlev, M. A. Milov, et al., Catal. Today, 51, 1–14 (1999).

    Google Scholar 

  47. D. Tantanak, M. A. Vincent, and I. H. Hillier, Chem. Commun., 1031/1032 (1998).

    Google Scholar 

  48. P. E. Sinclair and C. R. A. Catlow, J. Phys. Chem., 103, 1084–1095 (1999).

    CAS  Google Scholar 

  49. I. V. Yudanov, P. Gisdakis, C. Di Valentin, and N. Rösch, Eur. J. Inorg. Chem., 2135–2145 (1999).

  50. H. Munakata, Y. Oumi, and A. Miyamoto, J. Phys. Chem. B, 105, No. 17, 3493–3501 (2001).

    CAS  Google Scholar 

  51. M. Bühl, R. Schurhammer, and P. Imhof, J. Am. Chem. Soc., 126, 3310–3320 (2004).

    Google Scholar 

  52. C. Di Valentin, P. Gisdakis, I. V. Yudanov, and N. Rösch, J. Org. Chem., 65, 2996–3004 (2000).

    Google Scholar 

  53. I. V. Yudanov, C. Di Valentin, P. Gisdakis, and N. Rösch, J. Mol. Catal. A, 158, 189–197 (2000).

    CAS  Google Scholar 

  54. D. V. Deubel, J. Sundermeyer, and G. Frenking, J. Am. Chem. Soc., 122, 10101–10108 (2000).

    Google Scholar 

  55. D. V. Deubel, J. Sundermeyer, and G. Frenking, Inorg. Chem., 39, 2314–2320 (2000).

    CAS  Google Scholar 

  56. D. V. Deubel, J. Sundermeyer, and G. Frenking, Eur. J. Inorg. Chem., 1819–1827 (2001).

  57. D. V. Deubel, J. Phys. Chem. A, 105, 4765–4772 (2001).

    CAS  Google Scholar 

  58. P. Gisdakis, S. Antonzcak, S. Köstlmeier, et al., Angew. Chem. Int. Ed. Engl., 37, 2211–2214 (1998).

    CAS  Google Scholar 

  59. Y. D. Wu and J. J. Sun, Org. Chem., 63, 1752/1753 (1998).

    Google Scholar 

  60. F. E. Kühn, A. M. Santos, P. W. Roesky, et al., Chem. Eur. J., 5, 3603–3615 (1999).

    Google Scholar 

  61. F. R. Sensato, R. Custodio, E. Longo, et al., J. Org. Chem., 68, No. 15, 5870–5874 (2003).

    CAS  Google Scholar 

  62. F. R. Sensato, R. Custodio, E. Longo, et al., Eur. J. Org. Chem., No. 11, 2406–2415 (2005).

  63. D. Balcells, F. Maseras, and A. Lledos, J. Org. Chem., 68, No. 11, 4265–4274 (2003).

    CAS  Google Scholar 

  64. D. Balcells, F. Maseras, and G. Ujaque, J. Am. Chem. Soc., 127, No. 10, 3624–3634 (2005).

    CAS  Google Scholar 

  65. G. Zampella, P. Fantucci, V. L. Pecoraro, and L. De Gioia, J. Am. Chem. Soc., 127, No. 3, 953–960 (2005).

    CAS  Google Scholar 

  66. G. Zampella, P. Fantucci, V. L. Pecoraro, and L. De Gioia, Inorg. Chem., 45, No. 18, 7133–7143 (2006).

    CAS  Google Scholar 

  67. P. Gisdakis and N. Rösch, Eur. J. Org. Chem., 719–723 (2001).

  68. R. R. Sever and T. W. Root, J. Phys. Chem. B, 107, No. 17, 4090–4099 (2003).

    CAS  Google Scholar 

  69. M. Cui, W. Adam, J. H. Shen, et al., J. Org. Chem., 67, No. 5, 1427–1435 (2002).

    CAS  Google Scholar 

  70. K. N. Houk, J. Liu, and N. C. DeMello, and K. R. Condroski, J. Am. Chem. Soc., 119, 10147–10152 (1997).

    Google Scholar 

  71. D. A. Singleton, S. R. Merrigan, J. Liu, and K. N. Houk, ibid., 119, 3385/3386 (1997).

    Google Scholar 

  72. R. D. Bach, C. Canepa, J. E. Winter, and P. E. Blanchette, J. Org. Chem., 62, 5191–5197 (1997).

    CAS  Google Scholar 

  73. R. D. Bach, C. M. Estévez, J. E. Winter, and M. N. Glukhovtsev, J. Am. Chem. Soc., 120, 680–685 (1998).

    CAS  Google Scholar 

  74. R. D. Bach, M. N. Glukhovtsev, and C. Gonzales, ibid., 120, 9902–9910 (1998).

    CAS  Google Scholar 

  75. R. D. Bach, O. Dmitrenko, W. Adam, and S. Schambony, ibid., 125, 924–934 (2003).

    CAS  Google Scholar 

  76. P. Gisdakis and N. Rösch, J. Phys. Org. Chem., 14, 328–332 (2001).

    CAS  Google Scholar 

  77. C. Kim, T. G. Traylor, and C. L. Perrin, J. Am. Chem. Soc., 120, 9513 (1998).

    CAS  Google Scholar 

  78. W. Adam, W. Haas, and B. B. Lohray, ibid., 113, 6202–6208 (1991).

    CAS  Google Scholar 

  79. M. Bonchio, V. Conte, M. A. De Conciliis, et al., J. Org. Chem., 60, 4475–4480 (1995).

    CAS  Google Scholar 

  80. W. Adam, D. Golsch, J. Sundermeyer, and G. Wahl, Chem. Ber., 129, 1177–1182 (1996).

    CAS  Google Scholar 

  81. H. Arakawa, Y. Moro-Oka, and A. Ozaki, Bull. Chem. Soc. Jpn., 47, 2958 (1974).

    CAS  Google Scholar 

  82. W. Adam and D. Golsch, Chem. Ber., 127, 1111–1113 (1994).

    CAS  Google Scholar 

  83. W. A. Herrmann, R. W. Fischer, M. U. Rauch, and W. Scherer, J. Mol. Catal., 86, 243–266 (1994).

    CAS  Google Scholar 

  84. W. A. Herrmann, F. E. Kühn, M. R. Mattner, et al., J. Organomet. Chem., 538, 203–209 (1997).

    CAS  Google Scholar 

  85. J. Rudolph, K. L. Reddy, J. P. Chiang, and K. B. Sharpless, J. Am. Chem. Soc., 119, 6189/6190 (1997).

    Google Scholar 

  86. A. K. Yudin and K. B. Sharpless, ibid., 119, 11536/11537 (1997).

  87. C. Copéret, H. Adolfsson, and K. B. Sharpless, Chem. Commun., No. 16, 1565/1566 (1997).

  88. W. A. Herrmann, R. M. Kratzer, H. Ding, et al., J. Organomet. Chem., 555, 293–295 (1998).

    CAS  Google Scholar 

  89. W. A. Herrmann, H. Ding, R. M. Kratzer, et al., ibid., 549, 319–322 (1997).

    CAS  Google Scholar 

  90. W. A. Herrmann, J. D. G. Correia, M. U. Rauch, et al. ibid., 118, 33–45 (1997).

    CAS  Google Scholar 

  91. H. J. Ledon and F. Varescon, Inorg. Chem., 23, 2735–2737 (1984).

    CAS  Google Scholar 

  92. H. Mimoun, M. Postel, F. Casabianca, et al., Inorg. Chem., 21, 1303–1306 (1982).

    CAS  Google Scholar 

  93. I. I. Moiseev, J. Mol. Catal. A, 127, 1–23 (1997).

    CAS  Google Scholar 

  94. W. A. Herrmann, R. W. Fischer, D. W. Marz, Angew. Chem., Int., Ed. Engl., 30, No. 12, 1638–1641 (1991).

    Google Scholar 

  95. W. A. Herrmann, J. Organomet. Chem., 500, 149–173 (1995).

    CAS  Google Scholar 

  96. W. A. Herrmann and F. E. Kühn, Acc. Chem. Res., 30, 169–180 (1997).

    CAS  Google Scholar 

  97. W. A. Herrmann, R. W. Fischer, W. Scherer, and M. U. Rauch, Angew. Chem., Int. Ed. Engl., 32, No. 8, 1157–1160 (1993).

    Google Scholar 

  98. A. M. Al-Ajlouni and J. H. Espenson, J. Org. Chem., 61, 3969–3976 (1996).

    CAS  Google Scholar 

  99. H. Mimoun, P. Chaumette, M. Mignard, and L. Saussine, Nouv. J. Chim., 7, 467–475 (1983).

    CAS  Google Scholar 

  100. G. Boche, K. Möbus, K. K. Harms, and M. Marsch, J. Am. Chem. Soc., 118, 2770/2771 (1996).

    Google Scholar 

  101. E. P. Talsi and K. V. Shalyaev, J. Mol. Catal., 105, 131–136 (1996).

    CAS  Google Scholar 

  102. M. G. Clerici, G. Bellussi, and U. Romano, J. Catal., 129, 159–167 (1991).

    CAS  Google Scholar 

  103. M. G. Clerici and P. Ingallina, J. Catal., 140, 71–83 (1993).

    CAS  Google Scholar 

  104. B. Notari, Stud. Surf. Sci. Catal., 37, 413–425 (1988).

    CAS  Google Scholar 

  105. D. R. C. Huybrechts, L. De Bruycker, and P. A. Jacobs, Nature, 345, 240–242 (1990).

    CAS  Google Scholar 

  106. C. Prestipino, F. Bonino, S. Usseglio, et al., Chem. Phys. Chem., 5, No. 11, 1799–1804 (2004).

    CAS  Google Scholar 

  107. F. Bonino, A. Damin, G. Ricchiardi, et al., J. Phys. Chem. B, 108, No. 11, 3573–3583 (2004).

    CAS  Google Scholar 

  108. R. Guilard, J.-M. Latour, C. Lecomte, et al., Inorg. Chem., 17, 1228–1237 (1978).

    CAS  Google Scholar 

  109. O. A. Kholdeeva, Topics Catal., 40, 229–243 (2006).

    CAS  Google Scholar 

  110. D. H. Wells, A. M. Joshi, W. N. Delgass, and K. T. Thomson, J. Phys. Chem. B, 110, No. 30, 14627–14639 (2006).

    Google Scholar 

  111. W. R. Thiel and T. Priermeier, Angew. Chem. Int. Ed. Engl., 34, 1737/1738 (1995).

    Google Scholar 

  112. W. R. Thiel, Chem. Ber., 129, 575–580 (1996).

    CAS  Google Scholar 

  113. W. R. Thiel, J. Mol. Catal. A, 117, 449–454 (1997).

    CAS  Google Scholar 

  114. A. Hroch, G. Gemmecker, and W. R. Thiel, Eur. J. Inorg. Chem., 1107–1114 (2000).

  115. P. Gisdakis, I. V. Yudanov, and N. Rösch, Inorg. Chem., 40, 3755–3765 (2001).

    CAS  Google Scholar 

  116. D. V. Deubel, J. Sundermeyer, and G. Frenking, Org. Lett., 3, No. 3, 329–332 (2001).

    CAS  Google Scholar 

  117. F. E. Kühn, M. Groarke, E. Bencze, et al., Chem. Eur. J., 8, No. 10, 2370–2383 (2002).

    Google Scholar 

  118. L. F. Veiros, A. Prazeres, P. J. Costa, et al., Dalton Trans., No. 11, 1383–1389 (2006).

  119. C. Di Valentin, R. Gandolfi, P. Gisdakis, and N. Rösch, J. Am. Chem. Soc., 123, 2365–2376 (2001).

    Google Scholar 

  120. W. Adam and C. M. Mitchell, Angew. Chem. Int. Ed. Engl., 35, 533–535 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Yudanov.

Additional information

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 48, Supplement, pp. S117–S131, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudanov, I.V. Mechanism of olefin epoxidation with transition metal peroxo complexes: DFT study. J Struct Chem 48 (Suppl 1), S111–S124 (2007). https://doi.org/10.1007/s10947-007-0154-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0154-1

Keywords

Navigation