Skip to main content
Log in

Ab initio quantum-chemical study of vinylation of pyrrole and 2-phenylazopyrrole with acetylene in a KOH/DMSO system

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Interaction between pyrrole and its 2-vinyl, 2-azo, and 2-phenylazo derivatives with acetylene in the gas phase and DMSO was studied using the MP2/6-311++G**//MP2/6-31G* ab initio approach and including the solvation effects within the framework of the continuum model. Possible reasons are considered for the hindered character of direct vinylation of azopyrroles with acetylene in superbasic media. The introduction of the azo group in the 2 position of the pyrrole ring leads to the increased stability of the pyrrole anion and increased acidity from pK a = 22.1 for pyrrole and pK a = 20.5 for vinylpyrrole to pK a = 16.6 and 16.4 for 2-azopyrrole and 2-phenylazopyrrole, respectively. The binding energy between the pyrrole anion and the acetylene molecule decreases concurrently. The heat of formation of the pyrrole anion adducts with acetylene changes from ΔH = 4.8 kcal/mol for pyrrole to ΔH = 22.4 kcal/mol for 2-phenylazopyrrole. For all anion adducts under study, preferable isomers are Z isomers formed by the interaction of pyrrole anions with the cis-distorted acetylene molecule, but the formation of the E isomers corresponds to a lower activation barrier, which explains known Z stereoselectivity of the nucleophilic addition to monosubstituted acetylenes. When an azo group is introduced, the reaction becomes more endothermal, and the energy barriers to the formation of both Z and E isomers increase. Among other reasons for lowering of the activity of 2-arylazopyrroles during vinylation we consider possible reaction of acetylene addition at the most remote nitrogen atom of the azo group and participation of the anion center in cation chelation (K+ in the calculation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yokomichi, K. Saki, S. Tada, and T. Yamabe, Synth. Met., 69, 577 (1995).

    Article  CAS  Google Scholar 

  2. G. Zotti, S. Zecchin, G. Schiavon, et al., ibid., 78, 51–57 (1996).

    Article  CAS  Google Scholar 

  3. A. Chyla, S. Kucharski, J. Sworakowski, and M. Bieñkovski, Thin Solid Films, 284/285, 496–499 (1996).

    Article  Google Scholar 

  4. J. D. Nero and D. Laks, Synth. Met., 101, 440/441 (1999).

    Google Scholar 

  5. Y. Ishida and Y. Murata, JP 06145544 (1994) [Chem. Abstr., 121, 282311 (1994)].

  6. T. Kawafuoni, N. Yanagihara, and Y. Shinjo (Ricoh Co., Ltd., Japan), JP 2002129049 (2002) [Chem. Abstr., 136, 18109 (2002)].

  7. Y. Ueno, T. Sato, T. Tomura, and T. Noguchi (Ricoh Co., Ltd., Japan), JP 20022883731 (2002) [Chem. Abstr., 137, 286541 (2002)].

  8. Y. Ueno (Ricoh Co., Ltd., Japan), JP 20022347348 (2003) [Chem. Abstr., 138, 18109 (2003)].

  9. Z. Zhu, Y. Wang, and Y. Lu, Macromolecules, 36, 9585–9593 (2003).

    Article  CAS  Google Scholar 

  10. E. Wagner-Wysiecka, E. Luboch, M. Kowalczyk, and J. F. Biernat, Tetrahedron, 59, 4415–4420 (2003).

    Article  CAS  Google Scholar 

  11. A. Facchetti, A. Abbotti, L. Beverina, et al., Chem. Mater., 14, 4996–5005 (2002).

    Article  CAS  Google Scholar 

  12. Y. Wang, J. Ma, and Y. Jiang, J. Phys. Chem. A, 109, 7197–7206 (2005).

    Article  CAS  Google Scholar 

  13. B. A. Trofimov, A. I. Mikhaleva, S. E. Korostova, et al., Khim. Geterotsikl. Soedin., 213/214 (1977).

    Google Scholar 

  14. A. I. Mikhaleva, B. A. Trofimov, S. E. Korostova, et al., Izv. Sib. Otd. Akad. Nauk, Ser. Khim., 107–112 (1979).

  15. B. A. Trofimov and A. I. Mikhaleva, N-Vinylpyrroles [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  16. B. A. Trofimov, in: The Chemistry of Heterocyclic Compounds, Part 2, Vinylpyrroles, Vol. 48, R. A. Jones (ed.), Wiley, New York (1992), pp. 131–298.

    Chapter  Google Scholar 

  17. B. A. Trofimov, E.Yu. Schmidt, A. I. Mikhaleva, et al., Eur. J. Org. Chem., 17, 4021–4033 (2006).

    Article  Google Scholar 

  18. J. Tomasi, B. Mennucci, and E. Cancès, J. Mol. Struct. (Theochem), No. 464, 211–226 (1999).

  19. G. I. Almerindo, D. W. Tondo, and J. R. Pliego, Jr., J. Phys. Chem. A, 108, 166–171 (2004).

    Article  CAS  Google Scholar 

  20. C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 94, 5523–5527 (1990).

    Article  CAS  Google Scholar 

  21. L. Onsager, J. Am. Chem. Soc., 58, 1486–1493 (1936).

    Article  CAS  Google Scholar 

  22. J. G. Kirkwood, J. Chem. Phys., No. 2, 351–361 (1934).

  23. O. Tapia and O. Goscinski, Mol. Phys., 29, 1653–1661 (1975).

    Article  CAS  Google Scholar 

  24. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  26. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993).

    Article  CAS  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-98_Revision A.6, Gaussian, Inc., Pittsburgh PA (1998).

    Google Scholar 

  28. F. G. Bordwell, Acc. Chem. Res., 21, 456–463 (1988).

    Article  CAS  Google Scholar 

  29. B. A. Trofimov, A. I. Shatenshtein, É. S. Petrov, et al., Khim. Geterotsikl. Soedin., 632–638 (1980).

  30. V. A. Palm, Quantitative Theory of Organic Reactions [in Russian], Khimiya, Leningrad (1977).

    Google Scholar 

  31. F. G. Bordwell, J. S. Branca, D. L. Huges, and W. N. Olmstead, J. Org. Chem., 45, 3305–3313 (1980).

    Article  CAS  Google Scholar 

  32. T. I. Temnikova, A Course on the Theoretical Principles of Organic Chemistry [in Russian], Khimiya, Leningrad (1968).

    Google Scholar 

  33. S. I. Miller and G. Shkapenko, J. Am. Chem. Soc., 81, 5038–5041 (1955).

    Article  Google Scholar 

  34. T. Shimanouchi, “Molecular Vibrational Frequencies” in NIST Chemistry WebBook, NIST Standard Reference Database No. 69, P. J. Linstrom and W. G. Mallard (eds.), June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).

    Google Scholar 

  35. E. Lange and K. P. Mishenko, Z. Phys. Chem. A, 149, 1–41 (1930).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Kobychev.

Additional information

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 48, Supplement, pp. S107–S116, 2007.

Original Russian Text Copyright © 2007 by V. B. Kobychev, N. M. Vitkovskaya, E. Yu. Shmidt, E. Yu. Senotrusova, and B. A. Trofimov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobychev, V.B., Vitkovskaya, N.M., Shmidt, E.Y. et al. Ab initio quantum-chemical study of vinylation of pyrrole and 2-phenylazopyrrole with acetylene in a KOH/DMSO system. J Struct Chem 48 (Suppl 1), S100–S110 (2007). https://doi.org/10.1007/s10947-007-0153-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0153-2

Keywords

Navigation