Skip to main content
Log in

Interplay of computational chemistry and transient absorption spectroscopy in the ultrafast studies

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The primary physical and chemical processes in the photochemistry of 1-(trideuteromethyl)-2,3,4-trideutero (1) and 1-acetoxy-2-methoxy-(2) 9,10-anthraquinones were studied using femtosecond transient absorption spectroscopy and computational chemistry. Excitation of 1 and 2 at 270 nm results in the population of a set of highly excited singlet states which decay within the laser pulse by internal conversion and vibrational energy redistribution. The transient absorption spectra of the lowest singlet and triplet excited states of substituted anthraquinones 1 and 2 as well as the triplet excited and ground states of the products were detected. The assignments of the transient absorption spectra were performed on the basis of quantum chemical calculations of the electronic absorption spectra of the intermediates. Time-dependent density functional theory or CASSCF/CASPT2 procedure were used to calculate the spectroscopic properties of the intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Maltsev, T. Bally, M.-L. Tsao, et al., J. Am. Chem. Soc., 126, 237–249 (2004).

    Article  CAS  Google Scholar 

  2. N. P. Gritsan, E. A. Pritchina, T. Bally, et al., J. Phys. Chem. A, 111, 817–824 (2007).

    Article  CAS  Google Scholar 

  3. W. T. Borden, in: Reactive Intermediate Chemistry, R. A. Moss, M. S. Platz, and M. Jones, Hoboken, Wiley, New York (2004), pp. 961–1004.

    Google Scholar 

  4. N. P. Gritsan, M. S. Platz, and W. T. Borden, in: Computational Methods in Photochemistry, A. G. Kutateladze (ed.), Boca Raton, Talor & Francis (2005), pp. 235–356.

    Google Scholar 

  5. K. Andersson and B. O. Roos, Advanced Series in Physical Chemistry, 2. Modern Electronic Structure Theory, Part 1, World Scientific Publishing Co, Singapore (1995), pp. 55–109.

    Google Scholar 

  6. K. Andersson, M. R. A. Blomberg, M. P. Fülscher, et al., MOLCAS, Versions 5, Univ. Lund, Lund (2002).

    Google Scholar 

  7. A. I. Krylov, Acc. Chem. Res., 39, 83–91 (2006).

    Article  CAS  Google Scholar 

  8. Yi. Shao, L. F. Molnar, and Yo. Jung, Phys. Chem. Chem. Phys., 8, 3172–3191 (2006).

    Article  CAS  Google Scholar 

  9. R. De Vivie-Riedle, V. De Waele, L. Kurtz, et al., J. Phys. Chem., 107, 10591–10599 (2003).

  10. N. P. Gritsan, I. V. Khmelinski, and O. M. Usov, J. Am. Chem. Soc., 113, 9615–9620 (1991).

    Article  CAS  Google Scholar 

  11. N. P. Gritsan, S. A. Russkikh, L. S. Klimenko, et al., Teor. Eksp. Khim., 19, 455–462 (1983).

    CAS  Google Scholar 

  12. N. P. Gritsan, L. S. Klimenko, E. M. Shvartsberg, et al., J. Photochem. Photobiol. A: Chem., 52, 137–156 (1990).

    Article  CAS  Google Scholar 

  13. N. P. Gritsan, A. Kellmann, F. Tfibel, et al., J. Phys. Chem. A, 101, 794–801 (1997).

    Article  CAS  Google Scholar 

  14. F. Bernardi, M. Olivucci, and M. A. Robb, Chem. Soc. Rev., 25, 321–328 (1996).

    Article  CAS  Google Scholar 

  15. G. Burdzinski, J. C. Hackett, J. Wang, et al., J. Am. Chem. Soc., 128, 13402–13411 (2006).

    Google Scholar 

  16. M.-L. Tsao, N. P. Gritsan, T. R. James, et al., ibid., 125, 9343–9358 (2003).

    Article  CAS  Google Scholar 

  17. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  18. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-03, Revision C.02, Gaussian, Inc., Wallingford CT (2004).

    Google Scholar 

  20. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 105, 2999–3093 (2005).

    Article  CAS  Google Scholar 

  21. A. Dreuw and M. Head-Gordon, ibid., 4009–4037.

  22. B. O. Roos, Adv. Chem. Phys., 69, 339–445 (1987).

    Google Scholar 

  23. K. Pierloot, B. Dumez, P.-O. Widmark, et al., Theor. Chim. Acta., 90, 87–114 (1995).

    CAS  Google Scholar 

  24. B. O. Roos, K. Andersson, M. P. Fülscher, et al., J. Mol. Struct. (Theochem), 388, 257–276 (1996).

    CAS  Google Scholar 

  25. T. Nakayama, K. Ushida, K. Hamanoue, et al., J. Chem. Soc. Faraday Trans., 86, 95–103 (1990).

    Article  CAS  Google Scholar 

  26. T. Nakayama, Yu. Torii, T. Nagahara, et al., J. Phys. Chem. A, 103, 1696–1703 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Pritchina.

Additional information

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 48, Supplement, pp. S63–S70.

Original Russian Text Copyright © 2007 by E. A. Pritchina, N. P. Gritsan, G. T. Burdzinski, and M. S. Platz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pritchina, E.A., Gritsan, N.P., Burdzinski, G.T. et al. Interplay of computational chemistry and transient absorption spectroscopy in the ultrafast studies. J Struct Chem 48 (Suppl 1), S55–S63 (2007). https://doi.org/10.1007/s10947-007-0149-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0149-y

Keywords

Navigation