Skip to main content
Log in

New generation of semiempirical methods of molecular modeling based on the theory of group functions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The semiempirical methods of modeling the molecular systems using the group function approximation for electronic structure calculations have been used by the author for many years. The review discusses the general structure of the semiempirical method that uses the group functions and the results obtained by the particular methods, namely, the crystal field effective Hamiltonian method designed for systems containing transition metal ions and methods based on the strictly local geminal approximation designed for modeling the “organic” molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Z. Hückel, Physik, 70, 204 (1931).

    Article  Google Scholar 

  2. E. Z. Hückel, ibid., 72, 310 (1931).

    Article  Google Scholar 

  3. E. Z. Hückel, ibid., 76, 628 (1932).

    Article  Google Scholar 

  4. E. Z. Hückel, Phys. Chem., 35, 163 (1937).

    Google Scholar 

  5. E. Z. Hückel, Elektrochem., 43, 752, 827–849 (1937).

    Google Scholar 

  6. E. Z. Hückel, Elektrochem. Ber. Bunseng., 61, 866–890 (1957).

    Google Scholar 

  7. T. Clark et al., Theor. Chem. Acc., 110, 254 (2003).

    Google Scholar 

  8. D. Danovich, J. Mol. Struct. (Theochem), 235, 401 (1997).

    Google Scholar 

  9. J. J. P. Stewart, ibid., 195, 401.

  10. A. D. Daniels et al., Int. J. Quant. Chem., 77, 82 (2000).

    Article  CAS  Google Scholar 

  11. K. Jug et al., Chem. Phys. Lett., 208, 537 (1993).

    Article  CAS  Google Scholar 

  12. M. Kolb and W. Thiel, J. Comp. Chem., 14, 775 (1993).

    Article  CAS  Google Scholar 

  13. W. Weber and W. Thiel, Theor. Chem. Acc., 103, 495 (2000).

    CAS  Google Scholar 

  14. B. Ahlswede and K. Jug, J. Comp. Chem., 20, 563 (1999).

    Article  CAS  Google Scholar 

  15. N. F. Stepanov, “Problems of separating the variables in molecular problems,” Chemical Sciences Doctoral Dissertation, Moscow State University (1980).

  16. K. F. Freed, Semiempirical Methods of Electronic Structure Calculations, Part A, Techniques, G. A. Segal (ed.), Plenum, New York (1977).

    Google Scholar 

  17. R. Poteau, I. Ortega, F. Alary, et al., J. Phys. Chem. A, 105, No. 1, 198–205 (2001).

    Article  CAS  Google Scholar 

  18. M. S. Gordon, M. A. Freitag, P. Bandyopadhyay, et al., ibid., No. 2, 293–307.

  19. L. Seijo and Z. Barandiaran, Computational Chemistry: Reviews of Current Trends, Vol. 4, J. Leszcynski (ed.), World Scientific, Singapore (1999), pp. 55–152.

    Google Scholar 

  20. K. Ruedenberg, The Physical Nature of the Chemical Bond [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  21. R. McWeeny, Proc. R. Soc. Lond. Ser. A, 253, 242–259 (1959).

    CAS  Google Scholar 

  22. R. McWeeny, Rev. Mod. Phys., 32, No. 2, 335–369 (1960).

    Article  Google Scholar 

  23. R. McWeeney and B. Sutcliffe, Methods of Molecular Quantum Mechanics, Academic Press, London (1969).

    Google Scholar 

  24. R. McWeeney, Methods of Molecular Quantum Mechanics, Academic Press, London (1992).

    Google Scholar 

  25. A. L. Tchougréeff, A. M. Tokmachev, and I. Mayer, Int. J. Quant. Chem. (in press).

  26. S. Wilson, Electron Correlation in Molecules, Clarendon Press, Oxford (1984).

    Google Scholar 

  27. R. Constanciel, in: Localization and Delocalization in Quantum Chemistry, O. Chalvet, R. Daudel, S. Diner, and J. P. Malrieu (eds.), Reidel, Dordrecht (1975).

    Google Scholar 

  28. P. E. Schipper, Aust. J. Chem., 40, No. 6, 635–654 (1987).

    Article  CAS  Google Scholar 

  29. A. L. Chugreev and I. A. Misurkin, Dokl. Akad. Nauk SSSR, 291, No. 5, 1177–1181 (1986).

    CAS  Google Scholar 

  30. P. G. Lycos and R. G. Parr, J. Chem. Phys., 24, 1166 (1956); ibid., 25, 1301 (1956).

    Article  Google Scholar 

  31. R. G. Parr, Modern Quantum Chemistry. Istanbul Lectures, O. Sinanoglu (ed.), Academic Press, New York (1965).

    Google Scholar 

  32. P.-O. Löwdin, Perturbation Theory and its Applications in Quantum Mechanics, C. H. Wilcox (ed.), Wiley, New York (1966).

    Google Scholar 

  33. A. L. Tchougréeff, Phys. Chem. Chem. Phys., 1, No. 6, 1051–1060 (1999).

    Article  Google Scholar 

  34. A. B. Migdal, Theory of Finite Fermi Systems and Properties of Atomic Nucleus, Nauka, Moscow (1965).

    Google Scholar 

  35. A. V. Soudackov, A. L. Tchougréeff, and I. A. Misurkin, Theor. Chim. Acta, 83, Nos. 5/6, 389–416 (1992).

    Article  Google Scholar 

  36. H. Bethe, Ann. Physik, 3, No. 2, 133–208 (1929).

    Article  CAS  Google Scholar 

  37. J. H. Van Vleck, J. Chem. Phys., 7, No. 1, 72–84 (1939).

    Article  Google Scholar 

  38. A. V. Soudackov and K. Jug, Int. J. Quant. Chem., 62, No. 4, 403–418 (1997).

    Article  CAS  Google Scholar 

  39. A. V. Sudakov, “Electronic structure of transition metal complexes,” Physical and Mathematical Sciences Candidate’s Dissertation, L. Ya. Karpov Physicochemical Research Institute (1991).

  40. A. V. Sudakov, A. L. Chugreev, and I. A. Misurkin, Zh. Fiz. Khim., 68, No. 7, 1256–1264 (1994).

    CAS  Google Scholar 

  41. A. V. Sudakov, A. L. Chugreev, and I. A. Misurkin, ibid., 1264–1270.

  42. A. V. Soudackov, A. L. Tchougréeff, and I. A. Misurkin, Int. J. Quant. Chem., 57, 663–671 (1996).

    Article  CAS  Google Scholar 

  43. A. L. Tchougréeff, A. V. Soudackov, I. A. Misurkin, et al., Chem. Phys., 193, No. 1, 19–26 (1995).

    Article  Google Scholar 

  44. A. V. Soudackov, A. L. Tchougréeff, I. A. Misurkin, Int. J. Quant. Chem., 58, No. 2, 161–173 (1996).

    Article  CAS  Google Scholar 

  45. M. B. Darkhovskii, A. V. Soudackov, and A. L. Tchougréeff, Theor. Chem. Acc., 114, 97, 109 (2005).

    Article  CAS  Google Scholar 

  46. P. Gütlich, Struct. Bond., 44, 83–193 (1981).

    Google Scholar 

  47. P. Gütlich, A. Hauser, and H. Spiering, Angew. Chem. Int. Ed. Eng., 33, No. 20, 2024–2054 (1994).

    Article  Google Scholar 

  48. A. Dedieu, M.-M. Rohmer, and A. Veillard, Adv. Quant. Chem., 16, 43–95 (1982).

    CAS  Google Scholar 

  49. H. Kashiwagi, T. Takada, S. Obara, et al., Int. J. Quant. Chem., 14, No. 1, 13–27 (1978).

    Article  CAS  Google Scholar 

  50. D. C. Rawlings, M. Gouterman, E. R. Davidson, and D. Feller, ibid., 28, No. 6(I), 773–796 (1985).

    Article  CAS  Google Scholar 

  51. K. Pierloot, Mol. Phys., 101, 2083–2095 (2003).

    Article  CAS  Google Scholar 

  52. J. G. Bednorz and K. A. Müffer, Z. Phys., 64, No. 4, 189–193 (1986).

    Article  CAS  Google Scholar 

  53. M. G. Razumov and A. L. Chugreev, Zh. Fiz. Khim., 74, No. 1, 87–93 (2000).

    CAS  Google Scholar 

  54. A. L. Tchougréeff, J. Mol. Catal., 119, No. 1, 377–386 (1997).

    Article  Google Scholar 

  55. A. L. Tchougréeff and A. M. Tokmachev, J. Solid. State Chem., 176, No. 2, 633–645 (2003).

    Article  CAS  Google Scholar 

  56. M. Habel, H. Kuhlenbeck, H.-J. Freund, et al., Chem. Phys. Lett., 240, Nos. 1–3, 205–209 (1995).

    Article  Google Scholar 

  57. V. Staemmler, Proceedings of the NATO Advanced Study Institute on Metal-Ligand Interactions: Structure and Reactivity, N. Russo and D. R. Salahub (eds.), Kluwer, Dordrecht (1996), pp. 473–491.

    Google Scholar 

  58. A. M. Tokmachev and A. L. Chugreev, Khim. Fiz., 18, No. 1, 80–87 (1999).

    CAS  Google Scholar 

  59. A. V. Sinitsky, M. B. Darkhovskii, A. L. Tchougréeff, and I. A. Misurkin, Int. J. Quant. Chem., 88, No. 4, 370–379 (2002).

    Article  CAS  Google Scholar 

  60. G. Náray-Szabó and P. R. Surján, Chem. Phys. Lett., 96, No. 4, 499–501 (1983).

    Article  Google Scholar 

  61. V. I. Smirnov, A Course in Higher Mathematics [in Russian], Vol. 3, Part 1, Gos. Izd. Fiz. Mat. Lit., Moscow (1958).

    Google Scholar 

  62. E. Condon and G. Shortley, The Theory of Atomic Spectra, Cambridge University Press, New York (1957).

    Google Scholar 

  63. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, No. 15, 4899–4907 (1977); M. J. S. Dewar and W. Thiel, ibid., 4907–4917.

    Article  CAS  Google Scholar 

  64. M. J. S. Dewar, E. G. Zoebisch, E. Healy, and J. J. P. Stewart, ibid., 107, No. 13, 3902–3909 (1985).

    Article  CAS  Google Scholar 

  65. J. J. P. Stewart, J. Comp. Chem., 10, No. 2, 209–220 (1989).

    Article  CAS  Google Scholar 

  66. A. M. Tokmachev, “Methods for calculating the electronic structure of molecular systems with local groups of electrons,” Physical and Mathematical Sciences Candidate’s Dissertation, Karpov Research Institute of Physical Chemistry, Moscow (2003).

    Google Scholar 

  67. A. M. Tokmachev and A. L. Chugreev, Zh. Fiz. Khim., 73, No. 2, 320–331 (1999).

    CAS  Google Scholar 

  68. V. N. Tutubalin, Theory of Probabilities and Random Processes [in Russian], Moscow State University, Moscow (1992).

    Google Scholar 

  69. A. M. Tokmachev and A. L. Tchougréeff, J. Phys. Chem. A, 107, No. 3, 358–365 (2003).

    Article  CAS  Google Scholar 

  70. M. J. S. Dewar and H. S. Rzepa, J. Am. Chem. Soc., 100, No. 1, 58–67 (1978).

    Article  CAS  Google Scholar 

  71. M. J. S. Dewar and E. G. Zoebisch, Theochem., 49, No. 1, 1–21 (1988).

    Article  CAS  Google Scholar 

  72. A. M. Tokmachev and A. L. Tchougréeff, J. Comp. Chem., 22, No. 7, 752–764 (2001).

    Article  CAS  Google Scholar 

  73. C. A. White, B. C. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem. Phys. Lett., 253, Nos. 3/4, 268–278 (1996).

    Article  CAS  Google Scholar 

  74. A. M. Tokmachev and A. L. Tchougréeff, J. Phys. Chem. A, 109, 7613–7620 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Chugreev.

Additional information

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 48, Supplement, pp. S39–S62, 2007.

Original Russian Text Copyright © 2007 by A. L. Chugreev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugreev, A.L. New generation of semiempirical methods of molecular modeling based on the theory of group functions. J Struct Chem 48 (Suppl 1), S32–S54 (2007). https://doi.org/10.1007/s10947-007-0148-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0148-z

Keywords

Navigation