Skip to main content
Log in

Structural characteristics of close packings of hard spheres. Critical densities

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

For packings of similar hard spheres, there are several characteristic values of density. First, this is the maximal possible degree of space filling by spheres η = 0.74, realized for the crystalline packing of spheres. Another known value, η = 0.64, is the limiting (critical) value for disordered packings. We also indicate two more characteristic values of density: η = 0.60 and η = 0.66, in the vicinity of which qualitative changes in structure can occur. Computer models of the packings of hard spheres are investigated in the range of densities 0.52 < η < 0.72. Each packing consisted of 10,000 spheres in a cube with periodic boundary conditions. The structural characteristics were investigated using Delaunay simplices, defining the arrangement of the nearest four atoms. Simplices that are close to a regular tetrahedron or quartoctahedron (quarter of an octahedron) are considered. These forms are typical for the densest crystal structures. Variation of the fraction and ratio of these simplices is studied as a function of the packing density. According to the results, the threshold value, η = 0.60, corresponds to the density after which correlation of the disordered arrangement of spheres increases considerably. When η = 0.64, the structural organization changes more radically; high density demands the emergence of local crystal nuclei. The density η = 0.66 is the limiting density at which the crystalline nuclei can exist as independently distributed regions. Closer packings can only occur if a global crystal structure arises in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Hoover and F. H. Ree, J. Chem. Phys., 49, 3609–3612 (1968).

    Article  CAS  Google Scholar 

  2. H. Reiss and A. D. Hammerich, J. Phys. Chem., 90, No. 23, 6252–6260 (1986).

    Article  CAS  Google Scholar 

  3. P. Richard, L. Oger, J. P. Troadec, and J. P. Gervois, Phys. Rev. E, 60, No. 4, 4551–4560 (1999).

    Article  CAS  Google Scholar 

  4. S. Auer and D. Frenkel, J. Chem. Phys., 120, 3015–3029 (2004).

    Article  CAS  Google Scholar 

  5. T. C. Hales, Discrete Comput. Geom., 17, 1–51 (1997).

    Google Scholar 

  6. T. C. Hales, Ann. Mathem., 162, 1065–1185 (2005).

    Article  Google Scholar 

  7. J. D. Bernal, Proc. R. Soc. London A, 280, 299–322 (1964).

    CAS  Google Scholar 

  8. T. Aste, M. Saadatfar, and T. J. Senden, Phys. Rev. E, 71, 061302 (2005).

    Google Scholar 

  9. W. S. Jodrey and E. M. Tory, Phys. Rev. A, 32, 2347–2351 (1985).

    Article  Google Scholar 

  10. A. S. Clarke and H. Jonsson, Phys. Rev. E, 47, No. 6, 3975–3984 (1993).

    Article  CAS  Google Scholar 

  11. M. D. Rintoul and S. Torquato, ibid., 58, No. 1, 532–537 (1998).

    Article  CAS  Google Scholar 

  12. J. G. Berryman, Phys. Rev. A, 27, No. 2, 1053–1061 (1983).

    Article  CAS  Google Scholar 

  13. G. Parisi and F. Zamponi, J. Chem. Phys., 123, 144501 (2005).

    Google Scholar 

  14. P. Jalali and M. Li, ibid., 120, No. 2, 1138/1139 (2004).

    Article  CAS  Google Scholar 

  15. A. V. Anikeenko, N. N. Medvedev, A. Elsner, et al., Proceedings of the 3rd International Symposium on Voronoi Diagrams in Science and Engineering, B. Werner, IEEE Computer Society (2006), pp. 153–158.

  16. R. Jullien, A. Pavlovitch, and P. Meakin, J. Phys. A: Math. Gen., 25, 4103–4113 (1992).

    Article  Google Scholar 

  17. T. Aste, J. Phys.: Condens. Mat., 17, S2361-S2390 (2005).

    Google Scholar 

  18. M. Fanfoni and M. Tomellini, Nuovo Cimento, 20D, Nos. 7/8, 1171–1182 (1998).

    Article  CAS  Google Scholar 

  19. S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett., 84, No. 10, 2064–2067 (2000).

    Article  CAS  Google Scholar 

  20. Z. H. Stachurski, ibid., 90, No. 15, 155502-1-4 (2003).

  21. K. Lochmann, A. V. Anikeenko, A. Elsner, et al., Eur. Phys. J. B, 53, 67–76 (2006).

    Article  CAS  Google Scholar 

  22. W. S. Jodrey and E. M. Tory, Phys. Rev. A, 32, No. 4, 2347–2351 (1985).

    Article  Google Scholar 

  23. A. Bezrukov, M. Bargiel, and D. Stoyan, Part. Part. Syst. Charact., 19, No. 2, 111–118 (2002).

    Article  Google Scholar 

  24. M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, Phys. Rev. E, 74, 041127 (2006).

    Google Scholar 

  25. A. Okabe, B. Boots, K. Sugihara, and S. Chiu, Spatial Tessellations — Concepts and Applications of Voronoi Diagrams, Wiley, Chichester (2000).

    Google Scholar 

  26. N. N. Medvedev, Voronoi-Delaunay Method in Structural Studies of Noncrystalline Systems [in Russian], Siberian Division, Russian Academy of Sciences, Novosibirsk (2000).

    Google Scholar 

  27. N. N. Medvedev and Yu. I. Naberukhin, J. Non-Cryst. Solids, 94, 402–406 (1987).

    Article  CAS  Google Scholar 

  28. A. V. Anikeenko, M. L. Gavrilova, and N. N. Medvedev, Jpn. J. Industr. Appl. Math., 22, 151–165 (2005).

    Article  Google Scholar 

  29. Yu. I. Naberukhin, V. P. Voloshin, and N. N. Medvedev, Mol. Phys., 73, No. 4, 917–936 (1991).

    Article  CAS  Google Scholar 

  30. A. V. Anikeenko and N. N. Medvedev, J. Struct. Chem., 47, No. 2, 267–276 (2006).

    Article  CAS  Google Scholar 

  31. F. Spaepen, Nature, 408, 781/782 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Medvedev.

Additional information

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No. 4, pp. 823–830, July–August, 2007.

Original Russian Text Copyright © 2007 by A. V. Anikeenko and N. N. Medvedev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anikeenko, A.V., Medvedev, N.N. Structural characteristics of close packings of hard spheres. Critical densities. J Struct Chem 48, 774–781 (2007). https://doi.org/10.1007/s10947-007-0118-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0118-5

Keywords

Navigation