Skip to main content
Log in

DFT study of oxaloacetic acid condensation — The first step of the citric acid cycle

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of acylation of oxaloacetic acid (OA) with acetyl-CoA was studied at the DFT level using the basis functions 6-311G(d,p) and different numbers of diffuse functions. Four mechanisms are considered in this study. It is found that the most probable mechanism, in the approximation of isolated molecules, starts with the enol forms of oxaloacetic acid and acetylcystamine (final fragment from acetyl-CoA). The mechanisms are commented from the viewpoint of their thermodynamics. The calculations and UV/VIS spectroscopic analysis of OA showed that the enol form of the compound is available in ethanol, water and diethyl ether. The higher stability of the OA enol form (compared to the stability of the ketoform) was also reconfirmed by its experimental IR spectrum. The energy barrier of the enolization reaction of OA was calculated to be very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lehninger, Principles of Biochemistry, Freeman, New York (2004), p. 608.

    Google Scholar 

  2. M. Karpusas, B. Branchaud, and S. J. Remington, Biochemistry, 29, 2213–2219 (1990).

    Article  CAS  Google Scholar 

  3. A. J. Mulholland and W. G. Richards, J. Mol. Struct. (Theochem), 429, 13–21 (1998).

    Article  CAS  Google Scholar 

  4. S. F. Tayyari, S. Salemi, M. Z. Tabrizi, and M. Behforouz, J. Mol. Struct., 694, 91–104 (2004).

    Article  CAS  Google Scholar 

  5. A. J. Mulholland and W. G. Richards, J. Mol. Struct. (Theochem), 427, 175–184 (1998).

    Article  CAS  Google Scholar 

  6. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  7. M. Mons, I. Dimicoli, and F. Piuzzi, Int. Rev. Phys. Chem., 21, 101–135 (2002).

    Article  CAS  Google Scholar 

  8. M. D. Sevilla, D. Becker, M. Yan, and S. R. Summerfield, J. Phys. Chem., 95, 3409–3415 (1991).

    Article  CAS  Google Scholar 

  9. J. H. Hendricks, S. A. Lyapustina, H. L. de Clercq, and K. H. Bowen, ibid., 108, 8–11 (1998).

    Article  CAS  Google Scholar 

  10. V. M. Orlov, A. N. Smirnov, and Yu. M. Varshavskii, Tetrahedron Lett., 17, 4377/4378 (1976).

    Article  Google Scholar 

  11. X. Li, Z. Cai, and M. D. Sevilla, J. Phys. Chem. B, 105, 10115–10123 (2001).

    Google Scholar 

  12. J. R. Carney and T. S. Zwier, J. Phys. Chem. A, 104, 8677–8688 (2000).

    Article  CAS  Google Scholar 

  13. J. R. Carney and T. S. Zwier, Chem. Phys. Lett., 341, 77–85 (2001).

    Article  CAS  Google Scholar 

  14. R. J. Graham, R. T. Kroemer, M. Mons, et al., J. Phys. Chem. A, 103, 9706–9711 (1999).

    Article  CAS  Google Scholar 

  15. L. C. Snoek, E. G. Robertson, R. T. Kroemer, and J. P. Simons, Chem. Phys. Lett., 321, 49–56 (2000).

    Article  CAS  Google Scholar 

  16. P. Butz, R. T. Kroemer, N. A. MacLeod, E. G. Robertson, and J. P. Simons, J. Phys. Chem. A, 105, 1050–1056 (2001).

    Article  CAS  Google Scholar 

  17. P. Butz, R. T. Kroemer, N. A. MacLeod, and J. P. Simons, ibid., 105, 544–551 (2001).

    Article  CAS  Google Scholar 

  18. T. van Mourik and L. E. Emson, Phys. Chem. Chem. Phys., 4, 5863–5871 (2002).

    Article  CAS  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-98., A.3, Revision, Gaussian Inc., Pittsburgh, PA (1998).

    Google Scholar 

  20. SDBSWeb: http://www.aist.go.jp/RIODB/SDBS/ (National Institute of Advanced Industrial Science and Technology).

  21. L. Gorb and J. Leszczynski, J. Am. Chem. Soc., 120, 5024–5032 (1998).

    Article  CAS  Google Scholar 

  22. Y. Podolyan, L. Gorb, and J. Leszczynski, Int. J. Mol. Sci., 4, 410–421 (2003).

    Article  CAS  Google Scholar 

  23. A. K. Chandra, M. T. Nguyen, T. Uchimaru, and T. Zeegers-Huyskens, J. Phys. Chem. A, 103, 8853–8860 (1999).

    Article  CAS  Google Scholar 

  24. J. Gu and J. Leszczynski, ibid., 103, 2744–2750 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Delchev.

Additional information

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 48, No. 4, pp. 666–673, July–August, 2007.

Original Russian Text Copyright © 2007 by V. B. Delchev and G. T. Delcheva

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delchev, V.B., Delcheva, G.T. DFT study of oxaloacetic acid condensation — The first step of the citric acid cycle. J Struct Chem 48, 615–622 (2007). https://doi.org/10.1007/s10947-007-0094-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0094-9

Keywords

Navigation