Skip to main content
Log in

Homogeneous crystallization of the Lennard-Jones liquid. Structural analysis based on Delaunay simplices method

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystallization process of a simple liquid upon slow cooling has been modeled by the Monte-Carlo method. The model contains 10,000 Lennard-Jones atoms in the model box with periodic boundary conditions. The model structure is investigated at different stages of crystallization using Delaunay simplices. The simplex belonging to one or another particular crystal structure was determined by the shape of the given simplex taking into account the shape of its neighboring simplices. Simplices typical of the fcc and hcp crystal structures, as well as of polytetrahedral aggregates, not typical of crystals, were studied. The analysis has shown that the “precursors” of a hcp structure are strongly dominating over the “precursors” of a fcc structure in liquid phase before the beginning of crystallization. When crystallization starts, small embryos of the fcc structure are observed; the simplices peculiar to hcp are present at that in great amount, but they are distributed over the sample more uniformly. As crystallization proceeds, the portion of the fcc phase grows faster than hcp. However, no unified crystal appears in our case of slow cooling of the model. A complex polycrystalline structure containing crystalline regions with multiple twinning, pentagonal prisms and elements of icosahedral structures arises instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Voronoi, J. Reine Andew. Math., 134, 198–287 (1908); ibid., 136, 67–181 (1909).

    Google Scholar 

  2. B. N. Delaunay, Proc. Math. Congress in Toronto Aug. 11–16, 695–700 (1924–1928).

  3. N. N. Medvedev, Voronoi-Delaunay Method for Noncrystalline Structures [in Russian], Russian Academy of Science, Novosibirsk (2000).

    Google Scholar 

  4. Y. I. Naberukhin, V. P. Voloshin, and N. N. Medvedev, Mol. Phys., 73, No. 4, 917–936 (1991).

    Article  CAS  Google Scholar 

  5. J. Finney, Royal Society London, 319, 479–494; 495–507 (1970).

    CAS  Google Scholar 

  6. B. O’Malley and I. Snook, Phys. Rev. Lett., 90, No. 8, 085702 (2003).

  7. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B., 28, 784–805 (1983).

    Article  CAS  Google Scholar 

  8. V. A. Luchnikov, A. Gevois, P. Richard, et al., J. Mol. Liq., 96/97, 185–194 (2002).

    Article  Google Scholar 

  9. J. Bernal, Proc. R. Soc. London., A280, 299–322 (1964).

    Google Scholar 

  10. F. Spaepen, Nature., 408, 781/782 (2000).

    Article  CAS  Google Scholar 

  11. W. Brostow, M. Chybicki, P. Laskowski, and J. Rybicki, Phys. Rev. B., 57, No. 21, 13448–13452 (1998).

  12. V. P, Voloshin, Y. I. Naberukhin, and N. N. Medvedev, Mol. Simul. J., 4, 209–227 (1989).

    Google Scholar 

  13. A. V. Anikeenko, M. L. Gavrilova, and N. N. Medvedev, Jpn. J. Industr. Appl. Math., 22, 151–165 (2005).

    Article  Google Scholar 

  14. N. N. Medvedev, A. Bezrukov, and D. Shtoyan, Zh. Strukt. Khim, 45, 24–31 (2004).

    Google Scholar 

  15. A. Okabe, B. Boots, K. Sugihara, and S. Chin, Spatial Tessellations: Concepts and applications of Voronoi diagrams, John Wiley, Chichester (2000).

    Google Scholar 

  16. N. N. Medvedev and Yu. I. Naberukhin, J. Non-Cryst. Solids., 94, 402–406 (1987).

    Article  CAS  Google Scholar 

  17. A. V. Anikeenko, M. L. Gavrilova, and N. N. Medvedev, Lecture Notes Comp. Sci., 3480, 816–826 (2005).

    Article  Google Scholar 

  18. B. G. Bagley, Nature., 208, 674/675 (1965).

    Article  Google Scholar 

  19. H. Hofmeister, Cryst. Res. Technol., 33, 3–25 (1998).

    Article  CAS  Google Scholar 

  20. B. W. Van der Waal, Phys. Rev. Lett., 76, No. 7, 1083–1086 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2006 by A. V. Anikeenko and N. N. Medvedev

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 47, No.2, pp. 273–282, March–April, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anikeenko, A.V., Medvedev, N.N. Homogeneous crystallization of the Lennard-Jones liquid. Structural analysis based on Delaunay simplices method. J Struct Chem 47, 267–276 (2006). https://doi.org/10.1007/s10947-006-0296-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-006-0296-6

Keywords

Navigation