Skip to main content
Log in

Raman spectra of single H2O molecules isolated in cavities of crystals

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The vibrational (Raman) spectra of H2O molecules isolated in cavities of beryl, cordierite, bikitaite, natrolite, scolecite, lawsonite, and hemimorphite have been measured in the temperature range of 4–295 K. The influence of van der Waals and hydrogen bonds on the values of frequency, intensity, and half-width of stretching and bending modes of H2O is considered. The spectra of translational vibrations of H2O molecules in crystal cavities are discussed. For the firsts time, the ratio between the frequencies of translation and stretching vibrations of H2O and the dependence of frequencies of bending vibrations on the angle H-O-H in H2O molecule are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Morokuma, Acc. Chem. Res., 10, 294–300 (1977).

    Article  CAS  Google Scholar 

  2. H. D. Lutz, J. Mol. Struct., 646, 227–236 (2003).

    Article  CAS  Google Scholar 

  3. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford University Press (1969).

  4. A. D. Buckingham, J. Mol. Struct., 250, 111–118 (1991).

    Article  CAS  Google Scholar 

  5. B. A. Kolesov and C. A. Geiger, Phys. Chem. Miner., 27, 557–564 (2000).

    Article  CAS  Google Scholar 

  6. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, Krieger Publishing Company, 2nd Edition, Malabar, Florida, New York (1989).

  7. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Krieger Publishing Company, 2nd Edition, Malabar, Florida, New York (1991).

  8. B. Charoy, P. de Donato, O. Barres, and C. Pinto-Coelho, Am. Mineral., 81, 395–403 (1996).

    CAS  Google Scholar 

  9. B. A. Kolesov and C. A. Geiger, ibid., 85, 1265–1274 (2000).

    CAS  Google Scholar 

  10. B. A. Kolesov and C. A. Geiger, ibid., 88, 1364–1368 ( 2003).

    CAS  Google Scholar 

  11. G. C. Pimentel and S. W. Charles, Pure Appl. Chem., 7, 111 (1963).

    CAS  Google Scholar 

  12. S. Subramanian and E. D. Jr. Sloan, J. Phys. Chem. B106, 4348–4355 (2002).

    Google Scholar 

  13. E. Backinhem, Fundamentals of Intermolecular Force Theory. Applications to Small Molecules, in Intermolecular Interactions: From Diatomics to Biopolyemers, Vol. 2, B. Pullman (ed.), Chichester (UH): Wiley (1978), p. 70.

    Google Scholar 

  14. A. Novak, Struct. and Bonding, 18, 177–216 (1974).

    Article  CAS  Google Scholar 

  15. E. Libowitzky, Monatsh. Chem., 130, 1047–1059 (1999).

    CAS  Google Scholar 

  16. D. Hadzi and S. Bratos, Vibrational Spectroscopy of the Hydrogen Bond, in: The Hydrogen Bond, Vol. II, Chapter 12, 567–611 (1976).

    Google Scholar 

  17. S. Bratos, G. M. Gale, G. Gallot, et al., Phys. Rev., E61, 5211–5217 (2000).

    Google Scholar 

  18. J. Stenger, D. Madsen, P. Hamm, et al., Phys. Rev. Lett., 87, 027401(1–4) (2001).

  19. R. Rey and J. T. Hynes, J. Chem. Phys., 104, 2356–2368 (1996).

    Article  CAS  Google Scholar 

  20. R. Rey, K. B. Möller, and J. T. Hynes, J. Phys. Chem., A106, 11993–11996 (2002).

    Google Scholar 

  21. M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev., B28, 1928–1934 (1983).

    Google Scholar 

  22. J. González, E. Moya, and J. C. Chervin, ibid., B54, 4707–4713 (1996).

    Google Scholar 

  23. G. S. Landsberg and F. S. Baryshanskaya, Izv. Akad. Nauk SSSR, Ser. Fiz., X, 509–522 (1946).

    Google Scholar 

  24. B. A. Kolesov and C. A. Geiger, Am. Mineral. 87, 1426–1431 (2002).

    Google Scholar 

  25. T. Y. Bastow, S. L. Mair, and S. W. Wilkins, J. Appl. Phys., 48, 494–497 (1977).

    Article  CAS  Google Scholar 

  26. Z. Wang, A. Pakoulev, Y. Pang, and D. D. Dlott, J. Phys. Chem., A108, 9054–9063 (2004).

    Google Scholar 

  27. S. Quartieri, A. Sani, G. Vezzalini, et al., Micropor. Mesopor. Mater., 30, 77–87 (1999).

    Article  CAS  Google Scholar 

  28. K. Ståhl, Å. Kvick, and S. Ghose, Zeolites., 9, 303–311 (1989).

    Article  Google Scholar 

  29. O. Ferro, S. Quartieri, and G. Vezzalini, Am. Mineral., 87, 1415–1425 (2002).

    Google Scholar 

  30. H. Graener, J. Phys. Chem., 95, 3450–3453 (1991).

    Article  CAS  Google Scholar 

  31. M. Falk, Spectrochim. Acta., 40A, 43–48 (1984).

    CAS  Google Scholar 

  32. M. Falk, H. T. Flakus, and R. J. Boyd, ibid., 42A, 175–180 (1986).

    CAS  Google Scholar 

  33. Å. Kvick, K. Ståhl, and J. V. Smith, Z. Kristallogr., 171, 141–154 (1985).

    Article  CAS  Google Scholar 

  34. G. Artioli, J. V. Smith, and Å. Kvick, Acta Crystallogr., C40, 1658–1662 (1984).

    CAS  Google Scholar 

  35. D. L. Wood and K. Nassau, Am. Mineral., 53, 777–800 (1968).

    CAS  Google Scholar 

  36. D. S. Goldman and G. R. Rossman, ibid., 62, 1144–1157 (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 47, No. 1, pp. 27–40, January–February, 2006.

Original Russian Text Copyright © 2006 by B. A. Kolesov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesov, B.A. Raman spectra of single H2O molecules isolated in cavities of crystals. J Struct Chem 47, 21–34 (2006). https://doi.org/10.1007/s10947-006-0261-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-006-0261-4

Keywords

Navigation