Skip to main content
Log in

Structural and thermodynamic analysis of heteroassociation of daunomycin and flavin mononucleotide molecules in water by 1H NMR spectroscopy

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Heteroassociation of the antitumor antibiotic daunomycin (DAU) with flavin mononucleotide (FMN) has been investigated by one-and two-dimensional 1H NMR spectroscopy (500 MHz) in a water solution to determine the molecular mechanism of the combined action of the antibiotic and vitamin in the FMN-DAU system. The equilibrium constants of the reactions, induced proton chemical shifts, and thermodynamic parameters (ΔH, ΔS) of heteroassociation were determined from the concentration and temperature dependences of the proton chemical shifts in the interacting aromatic molecules. Analysis of the results indicate that heterocomplexes of riboflavin mononucleotide and daunomycin are formed due to stacking interactions between aromatic chromophores. The most probable spatial structure of the 1:1 DAU-FMN heterocomplex was determined by the molecular dynamics method using the X-PLOR program and the results of the analysis of the induced proton chemical shifts in molecules. Calculation of the relative content of self-and hetero-complexes of daunomycin for different values of the ratio (r) between the concentrations of flavin mononucleotide and daunomycin demonstrated that for r > 3, the contribution of DAU-FMN heterocomplexes to the equilibrium distribution of associates in aqueous solution is dominant. It is concluded that the aromatic molecules of vitamins, in particular, riboflavin, can form energetically strong heteroassociates with antitumor antibiotics in water solution and can thereby affect their medical and biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Au, N. Panchal, D. Li, and Y. Gan, Pharm Res., 14, 1659–1671 (1997).

    Article  CAS  Google Scholar 

  2. N. F. Lowndes and J. R. Murguia, Curr. Opin. Genet. Dev., 10, 17–25 (2000).

    Article  CAS  Google Scholar 

  3. F. Arcamone and S. Penco, Antracyclines and Antracenedione-Based Anticancer Agents, J. W. Lown (ed.), Elsevier, New York (1988), pp. 1–43.

    Google Scholar 

  4. F. Bouland and N. A. Kernan, Cancer Invest., 11, 534–553 (1993).

    Google Scholar 

  5. E. F. Gale, E. Cundliffe, P. E. Reynolds, M. H. Richmond, and M. J. Waring, in: The Molecular Basis of Antibiotic Action, Wiley, London (1981).

    Google Scholar 

  6. J. O. Armitage, Oncology, 16, 490–518 (2002).

    Google Scholar 

  7. A. L. Adel, R. T. Dorr, and J. D. Liddil, Cancer Invest., 11, 15–24 (1993).

    CAS  Google Scholar 

  8. F. Traganos, J. Kapuscinsky, and Z. Darzynkiewicz, Cancer Res., 51, 3682–3689 (1991).

    CAS  Google Scholar 

  9. D. B. Davies, D. A. Veselkov, L. N. Djimant, and A. N. Veselkov, Eur. Biophys. J., 30, 354–366 (2001).

    Article  CAS  Google Scholar 

  10. M. D. Mashkovskii, Pharmaceuticals [in Russian], Vol. 2, Part II, Novaya Volna, Moscow (2000), p. 75.

    Google Scholar 

  11. A. N. Veselkov, A. O. Lantushenko, A. S. Chubarov, et al., Zh. Fiz. Khim., 76, 1313–1320 (2002).

    Google Scholar 

  12. D. B. Davies, D. A. Veselkov, and A. N. Veselkov, Mol. Phys., 97, 439–451 (1999).

    Article  CAS  Google Scholar 

  13. D. B. Davies, D. A. Veselkov, V. V. Kodintsev, et al., ibid., 98, 1961–1972 (2000).

    Article  CAS  Google Scholar 

  14. D. B. Davies, R. Eaton, S. Baranovsky, and A. N. Veselkov, J. Biomol. Str. Dyn., 17, 887–901 (2000).

    CAS  Google Scholar 

  15. D. A. Veselkov, M. P. Evstigneev, V. V. Kodintsev, et al., Fiz. Khim., 75, 879–884 (2001).

    CAS  Google Scholar 

  16. C. Giessner-Prettre and B. Pullman, Quart. Rev. Biophys., 20, 113–172 (1987).

    Article  CAS  Google Scholar 

  17. A. T. Brunger, X-PLOR, A System for X-PLOR Crystallography and NMR, Yale Univ. Press (1992).

  18. W. Jorgensen, J. Chaindrasekhar, J. Madura, et al., J. Chem. Phys., 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  19. G. L. Kleywegt, Dictionaries for Heteros, News Uppsala Software Fact., 5, 4/5 (1998).

    Google Scholar 

  20. H. M. Berman, J. Westbrook, Z. Feng, et al., Nucleic Acids Res., 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  21. S. Neidle and G. Taylor, Biochem. Biophys. Acta, 479, 450–459 (1977).

    CAS  Google Scholar 

  22. N. L. Allinger, J. Am. Chem. Soc., 99, 8127–8134 (1977).

    Article  CAS  Google Scholar 

  23. R. D. Ross and S. Subramanian, Biochemistry, 20, 3096–3102 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 by M. P. Evstigneev, A. O. Rozvadovskaya, A. S. Chubarov, A. A. Hernandez Santiago, D. B. Davies, and A. N. Veselkov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 1, pp. 70–76, January–February, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evstigneev, M.P., Rozvadovskaya, A.O., Chubarov, A.S. et al. Structural and thermodynamic analysis of heteroassociation of daunomycin and flavin mononucleotide molecules in water by 1H NMR spectroscopy. J Struct Chem 46, 67–74 (2005). https://doi.org/10.1007/s10947-006-0010-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-006-0010-8

Keywords

Navigation