Skip to main content
Log in

Interatomic interactions and electronic structure of NbSe2 and Nb1.25Se2 nanotubes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Atomic models of achiral NbSe2 nanotubes are suggested. Band structure calculations have been performed to investigate the electronic structure and determine the parameters of interatomic interactions. The distribution of the density of states and pair bond occupancies of NbSe2 nanotubes are analyzed in relation to the type of the atomic configuration and the tube diameter; the results are compared with the band structure of the 2H-NbSe2 crystal. Calculations have been carried out on hypothetical “superstoichiometric” nanotubes with a formal composition Nb1.25Se2 as possible quasi-one-dimensional nanoforms of autointercalated niobium diselenide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego (1996).

    Google Scholar 

  2. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).

    Google Scholar 

  3. K. Tanaka, T. Yamabe, and K. Fuku (eds.), The Science and Technology of Carbon Nanotubes, Elsevier, Oxford (1999).

    Google Scholar 

  4. A. L. Ivanovskii, Quantum Chemistry in Materials Science. Nanotubular Forms of Substance [in Russian], Ural Branch, Russian Academy of Sciences, Ekaterinburg (1999).

    Google Scholar 

  5. P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty First Century, Cambridge Univ. Press, Cambridge (1999).

    Google Scholar 

  6. A. L. Ivanovskii, Usp. Khim., 71, No.3, 203–224 (2002).

    Google Scholar 

  7. R. Tenne and A. K. Zettl, Carbon Nanotubes, 80, 81–112 (2001).

    Google Scholar 

  8. A. Rothschild, R. Popovitz-Biro, O. Lourie, and R. Tenne, J. Phys. Chem., B104, No.38, 8976–8981 (2000).

    Google Scholar 

  9. O. Tal, M. Remskar, R. Tenne, and G. Haase, Chem. Phys. Lett., 344, Nos.5/6, 434–440 (2001).

    Google Scholar 

  10. R. Rosentsveig, A. Margolin, Y. Feldman, et al., Chem. Mater., 14, No.2, 471–473 (2002).

    Google Scholar 

  11. L. Scheffer, R. Rosentzveig, A. Margolin, et al., Phys. Chem. Chem. Phys., 4, No.11, 2095–2098 (2002).

    Google Scholar 

  12. M. Nath and C. N. R. Rao, Pure Appl. Chem., 74, No.9, 1545–1552 (2002).

    Google Scholar 

  13. Y. Q. Zhu, W. K. Hsu, H. W. Kroto, and D. R. W. Walton, J. Phys. Chem., B106, No.31, 7623–7626 (2002).

    Google Scholar 

  14. C. N. R. Rao and M. Nath, Dalton Trans., No. 1, 1–24 (2003).

  15. G. Seifert, H. Terrones, M. Terrones, et al., Phys. Rev. Lett., 85, No.1, 146–149 (2000).

    Google Scholar 

  16. G. Seifert, H. Terrones, M. Terrones, et al., Solid State Commun., 114, No.5, 245–248 (2000).

    Google Scholar 

  17. G. Seifert, H. Terrones, M. Terrones, and T. Frauenheim, ibid., 115, No.12, 635–638.

  18. G. Seifert, T. Kohler, and R. Tenne, J. Phys. Chem., B106, No.10, 2497–2501 (2002).

    Google Scholar 

  19. D. Vollath and D. V. Szabo, Acta Mater., 48, No.4, 953–967 (2000).

    Google Scholar 

  20. M. Nath and C. N. R. Rao, Chem. Commun., No. 21, 2236/2237 (2001).

  21. T. Yokoya, T. Kiss, A. Chainani, et al., Science, 294, 2518–2521 (2001).

    Google Scholar 

  22. W. C. Tonjes, V. A. Grenya, R. Liu, et al., Phys. Rev., B63, No.23, 5101–5105 (2001).

    Google Scholar 

  23. K. Rossnagel, O. Seifarth, L. Kipp, et al., ibid., B64, No.23, 5119–5127.

  24. E. Boaknin, M. A. Tanatar, J. Paglione, et al., Phys. Rev. Lett., 90, No.11, 7003–7006 (2003).

    Google Scholar 

  25. L. F. Mattheiss, Phys. Rev., B7, No.8, 3719–3742 (1973).

    Google Scholar 

  26. M. Hangyom, A. Kisoda, T. Nisho, et al., ibid., B50, No.16, 12033–12043 (1994).

    Google Scholar 

  27. L. Herman, J. Morales, L. Sanchez, et al., Chem. Mater., 7, No.8, 1576–1584 (1995).

    Google Scholar 

  28. K. Motizuki, Y. Nishio, M. Shirai, and N. Suzuki, J. Phys. Chem. Solids, 57, Nos.6–8, 1091–1098 (1996).

    Google Scholar 

  29. E. E. Krasovskii, O. Tiedje, W. Schattke, et al., J. Electron Spectr. Relat. Phenom., 114, 1133–1138 (2001).

    Google Scholar 

  30. J. Brandt, L. J. Kanzow, K. Rossnagel, et al., ibid., 555–561.

  31. O. Yu. Khizhun, Metallofiz. Nov. Tekhnol., 24, No.2, 141–149; No. 11, 1467–1476 (2002).

    Google Scholar 

  32. D. H. Galvan, J. H. Kim, M. B. Maple, et al., Fullerene Sci. Technol., 8, No.3, 143–147 (2000).

    Google Scholar 

  33. D. H. Galvan, J. H. Kim, M. B. Maple, and E. Adem, ibid., 9, No.2, 225–229 (2001).

    Google Scholar 

  34. M. Nath, S. Kar, A. K. Raychaudhuri, and C. N. R. Rao, Chem. Phys. Lett., 368, No.4, 690–695 (2003).

    Google Scholar 

  35. J. Wilson and A. D. Yoffe, Adv. Phys., 269, 193–198 (1969).

    Google Scholar 

  36. R. Hoffmann, Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures, VCH, New York (1988).

    Google Scholar 

  37. S. Y. Savrasov, Phys. Rev., B54, No.23, 16470–16486 (1996).

    Google Scholar 

  38. J. P. Perdew and Y. Wang, ibid., B45, No.20, 13244–13249 (1992).

    Google Scholar 

  39. C. Corcoran, P. Meerson, Y. Onuki, et al., J. Phys.: Cond. Matter., 6, 4479–4492 (1994).

    Google Scholar 

  40. Y. R. Hacohen, E. Grunbaum, R. Tenne, et al., Nature, 395, 336–338 (1998).

    Google Scholar 

  41. Y. R. Hacohen, R. Popovitz-Biro, E. Grunbaum, et al., Adv. Mater., 14, No.15, 1075–1087 (2002).

    Google Scholar 

  42. V. V. Ivanovskaya, A. N. Enyashin, N. I. Medvedeva, and A. L. Ivanovskii, http://xxx.lanl.gov/cond-matter/0304230 (2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2004 by A. N. Enyashin, V. V. Ivanovskaya, I. R. Shein, Yu. N. Makurin, N. I. Medvedeva, A. A. Sofronov, and A. L. Ivanovskii

Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 4, pp. 579–588, July–August, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enyashin, A.N., Ivanovskaya, V.V., Shein, I.R. et al. Interatomic interactions and electronic structure of NbSe2 and Nb1.25Se2 nanotubes. J Struct Chem 45, 547–556 (2004). https://doi.org/10.1007/s10947-005-0028-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-005-0028-3

Keywords

Navigation