Skip to main content
Log in

Optical and Color Modification in Polycarbonate/ZnS-NiO Nanocomposite Films Due to Laser Exposure

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We fabricate a nanocomposite (NC) of polycarbonate (PC), Zinc sulfide (ZnS) and Nickel oxide (NiO) nanoparticle by the sol-gel and ex-situ casting processes. We trust that this study is novel in the area of the impact of laser on such NC. The Rietveld alteration of XRD records indicates that both the prepared ZnS and NiO have a nano-nature of an average particle size of 4 and 18 nm. Samples of the PC/ZnS-NiO NC films are exposed to numerous laser fluences (4 – 30 J/cm2). We investigate the resulting outcome of the laser exposure on the optical behavior of the NC films, using ultraviolet spectroscopy (UVs). Upon raising the fluence up to 30 J/cm2, both the indirect and direct band gaps reduce. The Urbach energy exhibits a reverse trend. This can be attributable to the domination of chain crosslinks. Also, we detect the nature of microelectronic transitions, using the optical dielectric loss εʺ and find that the PC/ZnS-NiO NC films possess direct allowed transitions. Also, we study the laser induced modifications in the optical conductivity and dielectric parameters. Moreover, the optical coloration changes between the exposed samples and pristine are estimated. The pristine NC sample is uncolored. It shows significant color alterations upon the laser exposure. The induced improvements in the optical characters suggest that the laser is a convenient mean that permits the use of PC/ZnS-NiO NC in the optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. El Ghazaly and A. Aydarous, Results Phys., 7, 333 (2017).

    Article  ADS  Google Scholar 

  2. K. N. Yu and D. Nikezic, Nuclear Track Detectors: Design, Methods and Applications, Nova Science Publishers, New York, USA (2009) pp. 107–131; ISBN 978-1-60876-826-4

  3. N. L. Singh, A. Qureshi, F. Singh, and D. K. Avasthi, Mater. Sci. Eng. A, 457, 195 (2007).

    Article  Google Scholar 

  4. S. A. Durrani and R. K. Bull, Solid State Nuclear Track Detection, Pergamon Press, Oxford (1987); ISBN 9781483147512

  5. S. A. Nouh, H. Amer, and S. W. Remon, Nucl. Instrum. Methods Phys. Res. B, 267, 1129 (2009).

    Article  ADS  Google Scholar 

  6. S. El-Sayed and A. M. El-Sayed, J. Mater. Sci.: Mater. Electron., 32, 13719 (2021).

    Google Scholar 

  7. P. A. Hernley, S. A. Chavez, J. P. Quinn, and S. Linic, ACS Photonics, 4, 979 (2017).

    Article  Google Scholar 

  8. J. Hao, X. Wang, F. Liu, et al., Sci. Rep., 7, 3021 (2017).

    Article  ADS  Google Scholar 

  9. A. Pal, S. Srivastava, R. Gupta, and S. Sapra, Phys. Chem. Chem. Phys., 15, 15888 (2013).

    Article  Google Scholar 

  10. G. Wang, B. Huang, Z. Li, et al., Sci Rep., 5, 8544, (2015).

    Article  Google Scholar 

  11. S. A. Nouh, B. O. Alsobhi, A. AbouElfadl, and A. M. Massoud, J. Inorg. Organomet. Polym., 27, 1851 (2017).

    Article  Google Scholar 

  12. V. Navakoteswara Rao, P. Ravi, M. Sathish et al., J. Hazard. Mater., 413, 125359 (2021).

  13. A. A. Ahmad, A. M. Alsaad, Q. M. Al-Bataineh et al., Polym. Bull., 78, 1189 (2021).

    Article  Google Scholar 

  14. I. Jum’h, M. S. Mousa, M. Mhawish, et al., J. Appl. Polym. Sci., 137, 48643 (2019).

  15. H. Chamroukhi, Z. B. Hamed, A. Telfah, et al., Opt. Mater., 84, 703 (2018).

    Article  ADS  Google Scholar 

  16. L. Yesappa, M. Niranjana, S. P. Ashokkumar, et al., RSC Adv., 8, 15297 (2018).

    Article  ADS  Google Scholar 

  17. S. A. Nouh, S. Aldawood, M. M. E. Barakat, et al., Radiat. Eff. Defects Solids, 177, 57 (2022).

    Article  ADS  Google Scholar 

  18. M. J. Tommalieh, M. M. E. Barakat, R. A. Bahareth, et al., J. Macromol. Sci. Part B. Phys., 61, 479 (2022).

    Article  ADS  Google Scholar 

  19. M. Yi-Zhun, P. Li-Long, Z. Ya-Bin, et al., Chin. Phys. B, 7, 078104 (2011).

    Google Scholar 

  20. V. M. Oliveira, A. V. Ortiz, N. L. Del Mastro, and E. A. B. Moura, Radiat. Phys. Chem., 78, 553 (2009).

    Article  ADS  Google Scholar 

  21. S. A. Nouh, N. Gaballah, A. AbouElfadl, and S. A. Alsharif, Radiat. Prot. Dosim., 183, 450 (2019).

    Article  Google Scholar 

  22. S. A. Nouh, Y. E. Radwan, D. Elfiky, et al., Radiat. Phys. Chem., 97, 68 (2014).

    Article  ADS  Google Scholar 

  23. E. Fahim, M. Bekhit, A. Sobhy, and Z. I. Ali, Radiochim. Acta, 108, 231 (2020).

    Article  Google Scholar 

  24. S. Abdullahi, A. Aydarous, and N. Salah, Radiat. Phys. Chem., 188, 109656 (2021).

    Article  Google Scholar 

  25. A. Sudha, T. K. Maity, S. L. Sharma, and A. N. Gupta, Nucl. Instrum. Methods Phys. Res. B, 461, 171 (2019).

    Article  ADS  Google Scholar 

  26. H. M. Said, Z. I. Ali, and E. H. Ali, J. Appl. Polym. Sci., 101, 4358 (2006).

    Article  Google Scholar 

  27. S. A. Nouh and K. Benthami, J. Vinyl. Additive. Technol., 25, 271 (2019).

    Article  Google Scholar 

  28. L. Lutterotti, Nucl. Instr. Methods B, 268, 334 (2010).

    Article  ADS  Google Scholar 

  29. I. A. El-Mesady, Y. S. Rammah, A. M. Abdalla, and E. H. Ghanim, Radiat. Phys. Chem., 168, 108578 (2020).

    Article  Google Scholar 

  30. B. S. Rathore, M. S. Gaur, and K. S. Singh, J. Appl. Polym. Sci., 126, 960 (2012).

    Article  Google Scholar 

  31. B. Karthikeyan, S. Hariharan, R. V. Mangalaraja, et al., IEEE Photonics Technol. Lett., 30, 1539 (2018).

    Article  ADS  Google Scholar 

  32. A. A. Alhazime, K. A. Benthami, B. O. Alsobhi, et al., J. Vinyl Addit. Technol., 27, 47 (2021).

    Article  Google Scholar 

  33. R. Seoudi, A. A. Shabaka, M. Kamal, et al., J. Mol. Struct., 1013, 156 (2012).

    Article  ADS  Google Scholar 

  34. S. A. Nouh, A. AbouElfadl, K. Benthami, and A. A. Alhazime, Int. Polym. Process., 34, 255 (2019).

    Article  Google Scholar 

  35. A. E. Rakhshani, J. Phys.: Condens. Matter, 12, 4391 (2000).

    ADS  Google Scholar 

  36. F. Urbach, Phys. Rev., 92, 1324 (1953).

    Article  ADS  Google Scholar 

  37. L. A. Wahab, H. A. Zayed, and A. A. A. El-Galil, Thin Solid Films, 520, 5195 (2012).

    Article  ADS  Google Scholar 

  38. S. Prasher, M. Kumar, and S. Singh, Int. J. Polym. Anal. Charact., 19, 204 (2014).

    Article  Google Scholar 

  39. T. K. Hamad, R. M. Yusop, W. A. Al-Taa’y, et al., Int. J. Polym. Sci., 2014, 1 (2014).

  40. J. Tauc, “Optical Properties of Amorphous Semiconductors,” in: J. Tauc (Ed.), Amorphous and Liquid Semiconductors, Plenum Press, London, New York (1974), p. 159; DOI: https://doi.org/10.1007/978-1-4615-8705-7

  41. S. B. Aziz, O. G. Abdullah, A. M. Hussein, and H. M. Ahmed, Polymers, 9, 626 (2017).

    Article  Google Scholar 

  42. E. M. Mahrous, M. M. E. Barakat, R. A. Bahareth, et al., J. Mater. Res. Technol., 18, 3085 (2022).

    Article  Google Scholar 

  43. T. Palija, J. Dobi, and M. Jai, Colloids Surf. B, 108, 152 (2013).

    Article  Google Scholar 

  44. S. M. Pawar, A. V. Moholkar, I. K. Kim, et al., Curr. Appl. Phys., 10, 565 (2010).

    Article  ADS  Google Scholar 

  45. S. B. Aziz, E. M. A. Dannoun, D. A. Tahir et al., Materials, 14, 1570 (2021).

    Article  ADS  Google Scholar 

  46. M. A. Brza, S. B. Aziz, H. Anuar, and M. H. Al Hazza, Int. J. Mol. Sci., 20, 3910 (2019).

  47. M. Soylu, A. A. Al-Ghamdi, and F. Yakuphanoglu, J. Phys. Chem. Solids, 85, 26 (2015).

    Article  ADS  Google Scholar 

  48. V. Bhavsar and D. Tripathi, Indian J. Pure Appl. Phys., 54, 105 (2016).

    Google Scholar 

  49. M. A. Shams-Eldin, C. Wochnowski, M. Koerdt, et al., Opt. Mater., 27, 1138 (2005).

    Article  ADS  Google Scholar 

  50. B. Ranby and J. Rebek, Photodegradation, Photo-Oxidation, and Photostabilization of Polymers: Principles and Applications, Wiley, London, New York (1975), p. 153.

    Google Scholar 

  51. H. Mudila, P. Prasher, A. Kumar, et al., J. Phys.: Conf. Ser., 1531, 012105 (2019).

    Google Scholar 

  52. A. M. Ismail, M. I. Mohammed, and E. G. El-Metwally, Indian J. Phys., 93, 175 (2019).

    Article  ADS  Google Scholar 

  53. K. Nassau, Color for Science, Art and Technology, Elsevier, New York (1998).

  54. K. Benthami, M. M. E. Barakat, and S. A. Nouh, Eur. Phys. J. Appl. Phys., 92, 20402 (2020).

    Article  ADS  Google Scholar 

  55. S. A. Nouh, M. M. E. Barakat, H. A. El-Nabrawy, et al., Fibers Polym., 22, 1711 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir A. Nouh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouh, S.A., Mahrous, E.M., AlSomali, F. et al. Optical and Color Modification in Polycarbonate/ZnS-NiO Nanocomposite Films Due to Laser Exposure. J Russ Laser Res 44, 597–608 (2023). https://doi.org/10.1007/s10946-023-10168-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10168-0

Keywords

Navigation