Skip to main content
Log in

Narrow-Linewidth 1.5 μm Nd:YLF-YVO4 Intracavity Raman Laser

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We demonstrate a Nd : YLF-YVO4 intracavity Raman laser in the 1.5 μm eye-safe region. The fundamental wave at 1314 nm from the end-pumped Nd :YLF is down-converted to 1488 nm, utilizing the 890 cm1 Raman shift of an YVO4 laser crystal. We use two etalons in the fundamental cavity and Stokes cavity, respectively, to suppress their spectral line width. Under a diode pump power of 43 W at 806 nm, we obtain an average Stokes output power of 3.75 W at an acousto-optic Q-switched pulse repetition frequency of 20 kHz, corresponding to an optical efficiency of 8.7%. With the etalons used, the spectral line width of the Stokes laser is narrowed from over 0.2 to 0.04 nm. The beam quality factor of the eye-safe Stokes output is measured to be 1.12 and 1.19 in the x and y directions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Pask, Prog. Quantum Electron., 27, 3 (2003).

    Article  ADS  Google Scholar 

  2. J. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, Opt. Express, 19, 913 (2011).

    Article  ADS  Google Scholar 

  3. E. Granados, D. J. Spence, and R. P. Mildren, Opt. Express, 19, 10857 (2011).

    Article  ADS  Google Scholar 

  4. S. Reilly, V. G. Savitski, H. Liu, et al., Opt. Lett., 40, 930 (2015).

    Article  ADS  Google Scholar 

  5. J. A. Piper and H. M. Pask, IEEE J. Sel. Top. Quantum Electron., 13, 692 (2007).

    Article  Google Scholar 

  6. Y. F. Chen, Opt. Lett., 29, 2172 (2004).

    Article  ADS  Google Scholar 

  7. L. Fan, J. Shen, X. Wang, et al., Opt. Lett., 46, 3183 (2021).

    Article  ADS  Google Scholar 

  8. X. Ding, C. Fan, Q. Sheng, et al., Opt. Express, 22, 29111 (2014).

    Article  ADS  Google Scholar 

  9. T. T. Basiev, M. N. Basieva, A. V. Gavrilov, et al., Quantum Electron., 40, 710 (2010).

    Article  ADS  Google Scholar 

  10. R. Casula, J. Penttinen, M. Guina, et al., Optica, 5, 1406 (2018).

    Article  ADS  Google Scholar 

  11. H. Zhu, Y. Duan, G. Zhang, et al., Opt. Express, 17, 21544 (2009).

    Article  ADS  Google Scholar 

  12. G. M. Bonner, J. Lin, A. J. Kemp, et al., Opt. Express, 22, 7492 (2014).

    Article  ADS  Google Scholar 

  13. Q. Sheng, A. Lee, D. Spence, and H. Pask, Opt. Express, 26, 32145 (2018).

    Article  ADS  Google Scholar 

  14. Z. Liu, S. Men, Z. Cong, et al., Laser Phys., 28, 045002 (2018).

    Article  ADS  Google Scholar 

  15. Q. Sheng, R. Li, A. J. Lee, et al., Opt. Express, 27, 8540 (2019).

    Article  ADS  Google Scholar 

  16. H. Ma, X. Wei, H. Zhao, et al., Opt. Lett., 47, 2210 (2022).

    Article  ADS  Google Scholar 

  17. P. G. Zverev and L. I. Ivleva, Quantum Electron., 42, 27 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Fang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wu, Y., Fang, Z. et al. Narrow-Linewidth 1.5 μm Nd:YLF-YVO4 Intracavity Raman Laser. J Russ Laser Res 44, 534–539 (2023). https://doi.org/10.1007/s10946-023-10160-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10160-8

Keywords

Navigation