Skip to main content
Log in

High-Sensitivity Two-Core Dual-Polarization Photonic-Crystal-Fiber Surface-Plasmon-Resonance Sensor Based on Indium Tin Oxid

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this paper, we propose a high-sensitivity two-core dual-polarization photonic-crystal-fiber surfaceplasmon-resonance (PCF-SPR) sensor based on Indium Tin oxide (ITO). ITO is a conductor material with adjustable photoelectric properties and low losses in the infrared range, and the two-core structure could better direct the incident light to the metal surface to enhance the coupling. According to numerical simulation results, the maximum wavelength sensitivities are 17,000 nm/RIU and 25,500 nm/RIU in the x-polarization mode and y-polarization mode. The maximum resolution of the x-polarization mode and y-polarization mode of the sensor can reach 5.88·10−6 RIU and 3.92·10−6 RIU, respectively, and the liquid refractive index detection range is 1.32 – 1.39. Taking into account the simple structure and excellent sensing performance, the sensor has wide application prospect and can accurately detect the refractive index of liquids, such as blood plasma, hemoglobin, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Abdulrazak, Md. B. Hossain, Md. S. Islam, et al., Opt. Quantum Electron., 54, 58 (2022); DOI: https://doi.org/10.1007/s11082-021-03441-6

    Article  Google Scholar 

  2. D. Vijayalakshmi, C. T. Manimegalai, N. Ayyanar, et al., Opt. Quantum Electron., 53, 454 (2021); DOI: https://doi.org/10.1007/s11082-021-03092-7

    Article  Google Scholar 

  3. W. Liu, C. Hu, L. Zhou, et al., Phys. E: Low-Dimensional Systems and Nanostructures, 138, 115106 (2022); DOI: https://doi.org/10.1016/j.physe.2021.115106

  4. Q. Wang, H. Song, and A. Zhu, IEEE Trans. Instrum. Measurement, 70, 02007 (2021); DOI: https://doi.org/10.1109/TIM.2020.3039627

    Article  Google Scholar 

  5. E. Kretschmann and H. Raether, Z. Naturforsch. A, 23, 2135 (1968); DOI: https://doi.org/10.1515/zna-1968-1247

  6. I. Danlard, I. O. Mensah, E. K. Akowuah, et al., Optik, 258, 168893 (2022); DOI: https://doi.org/10.1016/j.ijleo.2022.168893

  7. A. A. Revathi and D. Rajeswari, J. Opt., 2, 163 (2020); DOI: https://doi.org/10.1007/s12596-020-00600-y

    Article  Google Scholar 

  8. S. Jain, K. Choudhary, and S. Kumar, Opt. Fiber Technol., 73, 103030 (2022); DOI: https://doi.org/10.1016/j.yofte.2022.103030

  9. M. R. Islam, M. A. Jamil, Md. S. Zaman, et al., Optik, 221, 165311 (2020); DOI: https://doi.org/10.1016/j.ijleo.2020.165311

  10. Y. Liu and H. Chen, J. Phys. D: Appl. Phys., 54, 325103 (2021); DOI: https://doi.org/10.1088/1361-6463/abfce7

  11. C. Liu, Y. Zhang, X. Li, et al., Opt. Fiber Technol., 72, 102975 (2022); DOI: https://doi.org/10.1016/j.yofte.2022.102975

  12. Md. N. Sakib, Mb. B. Hossainb, K. F. Al-tabatabaie, et al., Results Phys., 15, 102788 (2019); DOI: https://doi.org/10.1016/j.rinp.2019.102788

  13. C. Li, B. Song, Y. Guo, et al., IEEE Sensors J., 11, 5893 (2020); DOI: https://doi.org/10.1109/JSEN.2020.2972031

    Article  ADS  Google Scholar 

  14. C. Liu, J. Wang, F. Wang, et al., Opt. Commun., 464, 125496 (2020); DOI: https://doi.org/10.1016/j.optcom.2020.125496

  15. S. Yao, Y. Yu, S. Qin, et al., Opt. Express, 9, 16405 (2022); DOI: https://doi.org/10.1364/OE.456924

    Article  ADS  Google Scholar 

  16. G. Soghra, B. Jamal, and M. Bahar, Optik, 260, 169026 (2022); DOI: https://doi.org/10.1016/j.ijleo.2022.169026

  17. Q. Liu, Y. Jiang, Y. Sun, et al., Appl. Opt., 60, 1761 (2021); DOI: https://doi.org/10.1364/AO.419518

    Article  ADS  Google Scholar 

  18. H. Talukder, M. H. K. Anik, M. I. A. Isti, et al., Eur. Phys. J. Plus, 137, 1262 (2022); DOI: https://doi.org/10.1140/epjp/s13360-022-03484-y

    Article  Google Scholar 

  19. Md. A. Mollah and Md. S. Islam, IEEE Sensors J., 3, 2813 (2020); DOI: https://doi.org/10.1109/JSEN.2020.3023975

    Article  Google Scholar 

  20. R. Nasirifar, M. Danaie, and A. Dideban, Optik, 250, 168051 (2022); DOI: https://doi.org/10.1016/j.ijleo.2021.168051

  21. A. K. Shakya and S. Singh, Measurement, 188, 110513 (2022); DOI: https://doi.org/10.1016/j.measurement.2021.110513

  22. J. N. Jabir and N. A. Areebi, Opt. Quantum Electron., 54, 626 (2022); DOI: https://doi.org/10.1007/s11082-022-03950-y

    Article  Google Scholar 

  23. D. Rajeswari and A. A. Revathi, Optik, 258, 168897 (2022); DOI: https://doi.org/10.1016/j.ijleo.2022.168897

  24. S. Singh and Y. K. Prajapati, Optik, 235, 166657 (2021); DOI: https://doi.org/10.1016/j.ijleo.2021.166657

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggang Pan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, N., Pan, H., Zhang, A. et al. High-Sensitivity Two-Core Dual-Polarization Photonic-Crystal-Fiber Surface-Plasmon-Resonance Sensor Based on Indium Tin Oxid. J Russ Laser Res 44, 375–383 (2023). https://doi.org/10.1007/s10946-023-10144-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10144-8

Keywords

Navigation