Skip to main content
Log in

High-Loss Dual-Channel Broadband Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this paper, we propose a dual-channel broadband photonic-crystal fiber polarization filter with high loss based on surface plasmon resonance. We carefully design gold-coated elliptical air hole structure to improve the confinement loss and the isolation of x-polarized and y-polarized guided modes. Multi-order plasmonic modes are excited to broad the filtering band. Moreover, in view of our simulation results, we demonstrate that plasmonic resonance occurs at the wavelength, where birefringence abnormally changes; also, complete and incomplete mode coupling are able to be distinguished by birefringence. At communication wavelengths of 1550 and 1318 nm, the calculated confinement loss of x-polarized and y-polarized core modes are 744.63 and 1089 dB/cm, with crosstalk up to – 1282.54 and 2233.46 dB, respectively. The proposed dual-channel polarization filter will be a good choice for optical fiber communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Liu, S. Li, and H. Chen, IEEE Photonics J., 7, 1943 (2015).

    Google Scholar 

  2. Y. S. Sun, Y. F. Chau, H. H. Yeh, et al., Appl. Opt., 46, 5276 (2007).

    Article  ADS  Google Scholar 

  3. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, Opt. Lett., 21, 1547 (1996).

    Article  ADS  Google Scholar 

  4. I. Abdelaziz, H. Ademgil, F. Abdelmalek, and S. Haxha, Opt. Commun., 283, 5218 (2010).

    Article  ADS  Google Scholar 

  5. D. C. Zografopoulos and E. E. Kriezis, J. Lightw. Technol., 27, 773 (2009).

    Article  ADS  Google Scholar 

  6. W. Zhang, S. Lou, and X. Wang, Plasmonics, 13, 365 (2018).

    Article  Google Scholar 

  7. J. Lou, T. Cheng, and S. Li, Optik, 165, 295 (2018).

    Article  ADS  Google Scholar 

  8. A. Nagasaki, K. Saitoh, and M. Koshiba, Opt. Express., 19, 3799 (2011).

    Article  ADS  Google Scholar 

  9. S. Wang and S. Li, Opt. Fiber Technol., 51, 96 (2019).

    Article  ADS  Google Scholar 

  10. Q. Wang, J. Jing, X. Wang, et al., IEEE Instrum. Meas., 69, 0018 (2019).

    Google Scholar 

  11. G. An, Sh. Li, W. Zhang, et al., Opt. Commun., 331, 316 (2014).

    Article  ADS  Google Scholar 

  12. X. Lu, M. Chang, N. Chen, et al., IEEE Photonics J., 10, 1 (2018).

    Google Scholar 

  13. L. Yang, L. Wang, X. Jin, et al., Results Opt., 1, 100027 (2020).

    Article  Google Scholar 

  14. P. Yu, X. Jing, Y. Liu, et al., Opt. Int. J., 244, 167587 (2021).

    Google Scholar 

  15. Y. Qu, J. Yuan, X. Zhou, et al., Opt. Commun., 452, 0030 (2019).

    Article  Google Scholar 

  16. X. Yu, S. Zhang, Y. Zhang, et al., Opt. Express, 18, 17950 (2018).

    Article  ADS  Google Scholar 

  17. C. Tan, Z. Dong, X. He, et al., J. Opt. Soc. Am. B, 38, 0740 (2021).

    Google Scholar 

  18. M. F. O. Hameed, A. M. Heikal, B. M. Younis, et al., Opt. Express, 23, 7007 (2015).

    Article  ADS  Google Scholar 

  19. G. An, S. Li, W. Zhang, et al., Opt. Commun., 331, 316 (2014).

    Article  ADS  Google Scholar 

  20. Y. Wang, J. Shen, J. Li, and S. Li, Optik, 206, 164255 (2020).

    Article  ADS  Google Scholar 

  21. X. He, W. Wang, S. Li, et al., Plasmonics, 10, 335 (2015).

    Article  Google Scholar 

  22. Y. Gao, C. Sima, J. Cheng, et al., Opt. Commun., 450, 172 (2016).

    Article  ADS  Google Scholar 

  23. J. Wu, S. Li, X. Jing, et al., IEEE Photonics Technol. Lett., 30, 1368 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, F., Zhang, A. et al. High-Loss Dual-Channel Broadband Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance. J Russ Laser Res 44, 289–295 (2023). https://doi.org/10.1007/s10946-023-10133-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10133-x

Keywords

Navigation