Skip to main content
Log in

Effects of Plasma Plumes by Pulsed Laser Irradiating Centimeter-Level Space Debris

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Our aim in this paper is to address the effects of plasma expansion plumes by pulsed laser irradiating the centimeter-level space debris. A dynamic model of centimeter-level space debris irradiated by pulsed laser was established based on the finite element method (FEM), and the evolutionary processes and dynamics of plasma expansion plumes were simulated by COMSOL platform. Based on the simulation and experimental results, we verily the effectiveness of the proposed model by analyzing the plasma flow fields. Further, we describe the influence of impulse coupling coefficient with different incident laser powers. The results show that optimum coupling impulse is closely related to the variation of incident laser powers, and the jet velocity of the plasma expansion plumes increases with increase in the incident laser power. On the basis of this work, we investigate in details the dynamic responses of plasma expansion plumes generated by pulsed laser irradiating the debris with different incident laser powers and laser action times. We find that the jet velocity of the plasma expansion plumes increases fast with increase in the action time and incident laser power. Owing to the influence of plasma shielding, the jet velocity of the plasma expansion plumes reach about 348 m/s, when the action time of pulsed laser and incident laser power are 40 μs and 400 kW, respectively. The results obtained provide important theoretical reference for revealing the formation mechanism of plasma expansion plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Murtaza, S. J. H. Pirzada, T. Xu, and J. Liu, IEEE Access., 8, 61000 (2020); https://doi.org/10.1109/ACCESS.2020.2979505

  2. Y. W. Fang, J. Pan, Y. J. Luo, and C. W. Li, Acta Astronaut., 165, 184 (2019); https://doi.org/10.1016/j.actaastro.2019.09.010

  3. M. Li, Z. Z. Gong, and G. Q. Liu, Chinese Sci. Bull., 63, 2570 (2018); https://doi.org/10.1360/N972017-00880

  4. C. P. Mark and S. Kamath, Space Policy, 47, 194 (2019); https://doi.org/10.1016/j.spacepol.2018.12.005

  5. J. C. Liou and N. L. Johnson, Science, 311, 340 (2006); https://doi.org/10.1126/science.1121337

  6. C. R. Phipps and C. Bonnal, Acta Astronaut., 118, 224 (2016); https://doi.org/10.1016/j.actaastro.2015.10.005

  7. C. R. Phipps, G. Albrecht, H. Friedman, et al., Laser Part. Beams, 14, 1 (1996); https://doi.org/10.1017/S0263034600009733

  8. D. A. Liedahl, A. Rubenchik, S. B. Libby, et al., Adv. Space Res., 52, 895 (2013); https://doi.org/10.1016/j.asr.2013.05.019

  9. F. Cichocki, M. Merino, and E. Ahedo, Acta Astronaut., 146, 216 (2018); https://doi.org/10.1016/j.actaastro.2018.02.030

  10. S. Scharring, L. Eisert, R.-A. Lorbeer, and H.-A. Eckel, Opt. Eng., 58, 011004 (2019); https://doi.org/10.1117/1.OE.58.1.011004

  11. S. Scharring, R. A. Lorbeer, and H. A. Eckel, AIAA J., 56, 2506 (2018); https://doi.org/10.2514/1.J056718

  12. Z. G. Lin, X. Jin, H. Chang, and Z. W. Zhang, Laser Optoelectron. Prog., 55, 031401 (2018); https://doi.org/10.3788/LOP55.031401

  13. T. A. Lapushkina, A. V. Erofeev, O. A. Azarova, and O. A. Kravchenko, Aerosp. Sci. Technol., 85, 347 (2019); https://doi.org/10.1016/j.ast.2018.12.020

  14. T. Rostilov and V. S. Ziborov, Acta Astronaut., 178, 900 (2021); https://doi.org/10.1016/j.actaastro.2020.10.022

  15. I. Levchenko, O. Baranov, J. H. Fang, et al., Aerosp. Sci. Technol., 108, 106343 (2021); https://doi.org/10.1016/j.ast.2020.106343

  16. Y. W. Fang, L. W. Yang, S. H. Zhao, and Y. Wang, Optik, 127, 1078 (2016); https://doi.org/10.1016/j.ijleo.2015.10.142

  17. Q. Q. Shi, Y. Zhang, P. Zhao, and C. Wang, J. Beijlng Univ. Aeronaut. Astronaut., 44, 2621 (2018); https://doi.org/10.13700/j.bh.1001-5965.2018.0241

  18. Y. J. Hong, X. Jin, and H. Chang, Infrared Laser Eng., 45, 0229001 (2016); https://doi.org/10.3788/m0001820164502.229001

  19. H. Lamb, Eng. Technol., 13, 48 (2018); https://doi.org/10.1049/et.2018.0104

  20. H. Chang, X. Jin, and Y. J. Hong, Acta Aeronaut. Astronaut. Sin., 34, 2325 (2013); https://doi.org/10.7527/S1000-6893.2013.0311

  21. Z. Y. Chen, D. Bleiner, and A. Bogaerts, J. Appl. Phys., 99, 063304 (2006); https://doi.org/10.1063/1.2182078

  22. M. Z. Zhu, Y. Cheng, X. Chen, et al., Infrared Laser Eng., 48, 0805004 (2019); https://doi.org/10.3788/IRLA201948.0805004.

  23. C. L. Wang, Y. Zhang, and K. P. Wang, Laser Optoelectron. Prog., 53, 121404 (2016); https://doi.org/10.3788/LOP53.121404

  24. C. R. Phipps, T. P. Turner, R. F. Harrison, et al., J. Appl. Phys., 64, 1083 (1988); https://doi.org/10.1063/1.341867

  25. C. R. Phipps, J. Luke, D. J. Funk, et al., Appl. Surface Sci., 252, 4838 (2006); https://doi.org/10.1016/j.apsusc.2005.07.079

  26. Y. W. Fang, J. Laser Appl., 34, 022018 (2022); https://doi.org/10.2351/7.0000662

  27. J. E. Sinko and C. R. Phipps, Appl. Phys. Lett., 95, 1 (2009); https://doi.org/10.1063/1.3234382

  28. H. Chang, X. Jin, J. F. Ye, and Z. G. Lin, J. Pet. Technol., 38, 1427 (2017); https://doi.org/10.13675/j.cnki.tjjs.2017.06.028

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingwu Fang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y. Effects of Plasma Plumes by Pulsed Laser Irradiating Centimeter-Level Space Debris. J Russ Laser Res 44, 271–283 (2023). https://doi.org/10.1007/s10946-023-10131-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10131-z

Keywords

Navigation