Skip to main content
Log in

Picosecond Dynamics Features of Electronic Excitations in Gold Nanorods

  • Published:
Journal of Russian Laser Research Aims and scope

We study the electronic excitation dynamics in ensembles of plasmonic gold nanorods (Au NRs), in view of the femtosecond transient absorption spectroscopy, and compare the results with the excitation dynamics of spherical Au nanoparticles (NPs). We use the obtained kinetics of the transient absorption of Au NRs and Au NPs to fit the theoretical profile of the temperature relaxation of the excitation dynamics of electron and lattice nanoparticles, as well as their environment under the excitation by laser pulses with duration of 150 fs. For gold nanorods, the electron–phonon interaction constant reads γNRs = 12 · 1016 W·m3·K1, and the heat loss is hNRs = 16 · 108 W·m2·K1. In the case of gold nanospheres, the constants are γNPs = 7· 1016 W·m3·K1 and hNRs = 8· 108 W·m2·K1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Jarrett, T. Zhao, T. Zhao, et al., J. Phys. Chem. C, 119, 15779 (2015).

    Article  Google Scholar 

  2. I. Grevtseva, O. Ovchinnikov, M. Smirnov, et al., Opt. Express, 30, 4668 (2022).

    Article  ADS  Google Scholar 

  3. O. V. Ovchinnikov, M. S. Smirnov, T. A. Chevychelova, et al., Dye. Pigment., 197, 109829 (2022); DOI: https://doi.org/10.1016/j.dyepig.2021.109829.

  4. Y. Wang, X. Xie, and T. Goodson, Nano Lett., 5, 2379 (2005).

    Article  ADS  Google Scholar 

  5. A. I. Zvyagin, A. S. Perepelitsa, M. S. Lavlinskaya, et al., Optik, 175, 93 (2018).

    Article  ADS  Google Scholar 

  6. H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, Nat. Commun., 9, 1012 (2018).

    Article  Google Scholar 

  7. X. Zhang, C. Huang, M. Wang, et al., Sci. Rep., 8, 10499 (2018).

    Article  ADS  Google Scholar 

  8. Y. U. Staechelin, D. Hoeing, F. Schulz, and H. Lange, ACS Photonics, 8, 752 (2021).

    Article  Google Scholar 

  9. D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, J. Phys. Chem., 115, 8503 (2011).

    Article  Google Scholar 

  10. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, Chem. Phys. Lett., 315, 12 (1999).

    Article  ADS  Google Scholar 

  11. T. S. Ahmadi, S. L. Logunov, and M. A. El-Sayed, J. Phys. Chem., 100, 8053 (1996).

    Article  Google Scholar 

  12. G. Jagannatha, B. Eraiaha, K. NagaKrishnakanth, and S. V. Rao, J. Non-Crystalline Solids, 482, 160 (2018).

    Article  ADS  Google Scholar 

  13. Y.-xi Zhang and Y.-hua Wang, RSC Adv., 7, 45129 (2017).

  14. E. Shahriaria, M. Moradia, and M. G. Varnamkhastia, Int. J. Opt. Photonics, 9, 107 (2015); URL: ijop.ir/article-1-206-en.html

  15. F. Chen, J. Cheng, S. Dai, and Q. Nie, J. Non-Crystalline Solids, 377, 151 (2013).

    Article  ADS  Google Scholar 

  16. Y. A. Attia, M. T. Flores-Arias, D. Nieto, et al., J. Phys. Chem. C., 119, 13343 (2015).

    Article  Google Scholar 

  17. R. Jin, Y. W. Cao, and C. A. Mirkin, Science, 294, 1901 (2001).

    Article  ADS  Google Scholar 

  18. S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, Algorithmica, 34, 512 (2002).

    Article  MathSciNet  Google Scholar 

  19. T. A. Chevychelova, A. I. Zvyagin, O. V. Ovchinnikov, et al., Opt. Spectrosc., 129, 1583 (2021).

    Google Scholar 

  20. R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, Adv. Opt. Technol., 2008, 251718 (2008); DOI: https://doi.org/10.1155/2008/251718

  21. S. Hashimoto, T. Uwada, M. Hagiri, and R. Shiraishi, J. Phys. Chem. C, 115, 4986 (2011).

    Article  Google Scholar 

  22. V. Kotaidis, C. Dahmen, G. von Plessen, et al., J. Chem. Phys., 124, 184702 (2006).

    Article  ADS  Google Scholar 

  23. Z. Lin and L. V. Zhigilei, Phys. Rev. B, 77, 075133 (2008).

    Article  ADS  Google Scholar 

  24. M. Hu, H. Petrova, G. V. Hartland, Chem. Phys. Lett., 391, 220 (2004).

    Article  ADS  Google Scholar 

  25. N. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater., 13, 1389 (2001).

    Article  Google Scholar 

  26. I. G. Grevtseva, T. A. Chevychelova, V. N. Derepko, et al., Bull. Lebedev Physics Inst., 48, 81 (2021).

    Article  ADS  Google Scholar 

  27. A. P. Blokhin, M. F. Gelin, O. V. Buganov, et al., J. Appl. Spectrosc., 70, 70 (2003); DOI: https://doi.org/10.1023/A:1023272425247

    Article  Google Scholar 

  28. V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, et al., Chem. Soc. Rev., 37, 1792 (2008).

    Article  Google Scholar 

  29. O. L. Anderson, D. G. Isaak, and S. Yamamoto J. Appl. Phys., 65, 1534 (1989).

    Article  ADS  Google Scholar 

  30. J. Huang, Y. Zhang, J. K. Chen, Appl. Phys. A, 95, 643 (2009).

    Article  ADS  Google Scholar 

  31. J. Lock and P. Laven, J. Opt. Soc. Am. A, 29, 1489 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Chevychelova.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevychelova, T.A., Ovchinnikov, O.V., Smirnov, M.S. et al. Picosecond Dynamics Features of Electronic Excitations in Gold Nanorods. J Russ Laser Res 44, 82–91 (2023). https://doi.org/10.1007/s10946-023-10111-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10111-3

Keywords

Navigation