Skip to main content
Log in

Polydimethylsiloxane Encapsulated MMF-TCF-NCF SENSOR with High and Stable Temperature Sensitivity

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

A polydimethylsiloxane (PDMS) coated fiber-optic sensor based on the Mach–Zehnder interference is presented. The sensor is composed of multimode fiber, thin-core fiber, and no-core fiber. Owing to the different cladding and core sizes of the three fibers, the Mach–Zehnder interference and strong external evanescent wave are generated. To improve the temperature sensitivity, we introduce the PDMS with high thermal expansion coefficient and high negative thermo-optic coefficient into the sensor. Results show that the temperature sensitivity of the original fiber-optic sensor is 0.0177 dB/℃ in the range of 40–80℃. After coating PDMS, the temperature sensitivity of the proposed sensor is improved to 0.0356 dB/℃. At the same time, the heating and cooling experiments and the long-time temperature testing are performed to demonstrate the repeatability and stability of the sensor. Owing to its excellent performances, the proposed sensor exhibits a great potential in the temperature sensing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Pasquale and V. Ruggeri, J. Micromech. Microeng., 29, 103001 (2019).

    Article  Google Scholar 

  2. T. Allsop and R. Neal, Sensors, 19, 4874 (2019).

    Article  ADS  Google Scholar 

  3. Z. D. Gong, Z. Y. Xiang, X. Ou Yang, et al., Materials, 12, 3311 (2019).

  4. C. X. Li, W. L. Yang, M. Wang, et al., Sensors, 20, 4215 (2020).

    Article  ADS  Google Scholar 

  5. A. K. Sharma and C. Marques, IEEE Sens. J., 19, 7168 (2019).

  6. W. W. Qian, C. L. Zhao, S. L. He, et al., Opt. Lett., 36, 1548 (2011).

    Article  ADS  Google Scholar 

  7. J. Wang, L. Pei, J. S. Wang, et al., Opt. Express, 28, 1456 (2020).

    Article  ADS  Google Scholar 

  8. D. Kacik, P. Tatar, and I. Turek, Optik, 127, 5631 (2016).

    Article  ADS  Google Scholar 

  9. C. R. Liao, Y Wang, D. N. Wang, et al., IEEE Photonic. Technol. Lett., 22, 1686 (2010).

    Article  ADS  Google Scholar 

  10. H. Zhang, S. S. Gao, Y. H. Luo, et al., Sensors, 18, 1239 (2018).

    Article  ADS  Google Scholar 

  11. C. P. Lang, Y. Liu, Y. Y. Liao, et al., IEEE Sens. J., 20, 5286 (2020).

    Article  ADS  Google Scholar 

  12. F. C. Zhang, X. Z. Xu, J. He, et al., Opt. Lett., 44, 2466 (2019).

    Article  ADS  Google Scholar 

  13. W. Jin, X. Li, S. H. Wu, et al., Opt. Express, 28, 20062 (2020).

    Article  ADS  Google Scholar 

  14. F. Wang, K. B. Pang, T. Ma, et al., Opt. Laser Technol., 130, 106333 (2020).

    Article  Google Scholar 

  15. P. Xian, G. Y. Feng, and S. H. Zhou, IEEE Photonic. Technol. Lett., 28, 95 (2015).

    Article  Google Scholar 

  16. J. Li, Z. B. Li, J. T. Yang, et al., Opt. Laser Technol., 129, 106296 (2020).

    Article  Google Scholar 

  17. Y. F. Geng, X. J. Li, X. L. Tan, et al., IEEE Sens. J., 11, 2891 (2011).

    Article  ADS  Google Scholar 

  18. Y. Liu and C. Y. Yu, Opt. Express, 27, 20107 (2019).

    Article  Google Scholar 

  19. Y. Zhao, Q. L. Wu, and Y. N. Zhang, Sensor Actuat. B Chem., 258, 822 (2018).

    Article  Google Scholar 

  20. X. P. Zhang and W. Peng, Opt. Express, 23, 10353 (2015).

    Article  ADS  Google Scholar 

  21. L. Cai, Y. Liu, S. Hu, et al., Microw. Opt. Technol. Lett., 61, 1656 (2019).

    Article  Google Scholar 

  22. H. Gao, H. F. Hu, Y. Zhao, et al., Sensor Actuat. A Phys., 284, 22 (2018).

    Article  Google Scholar 

  23. W. L. Yang, R. Pan, X. Y. Yu, et al., Optik, 210, 164495 (2020).

    Article  ADS  Google Scholar 

  24. C. Y. He, J. B. Fang, Y. A. Zhang, et al., Opt. Express, 26, 9686 (2018).

    Article  ADS  Google Scholar 

  25. W. L. Yang, C. X. Li, M. Wang, et al., IEEE Sens. J., 21, 51 (2020).

    Article  ADS  Google Scholar 

  26. M. H. Wang, Y. Yang, S. Huang, et al., Opt. Express, 28, 20225 (2020).

    Article  ADS  Google Scholar 

  27. P. Lu, L. Men, K. Sooley, et al., Appl. Phys. Lett., 94, 131110 (2009).

    Article  ADS  Google Scholar 

  28. Q. Z. Wang, H. Y. Meng, X. F. Fan, et al., Rev. Sci. Instrum., 91, 015006 (2020).

    Article  ADS  Google Scholar 

  29. R. T. Yang, L. Q. Zhu, J. Li, et al., Instrum. Sci. Technol., 48, 326 (2020).

    Article  Google Scholar 

  30. L. J. Zhang, Y. L. Xiong, N. K. Ren, et al., J. Russ. Laser Res., 42, 569 (2021).

    Article  Google Scholar 

  31. J. Q Gong, C. Y Shen, Y. K. Xiao, et al., Opt. Fiber Technol., 53, 102029 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Yang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Xu, M., Chen, Q. et al. Polydimethylsiloxane Encapsulated MMF-TCF-NCF SENSOR with High and Stable Temperature Sensitivity. J Russ Laser Res 44, 61–67 (2023). https://doi.org/10.1007/s10946-023-10108-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10108-y

Keywords

Navigation