Skip to main content

Advertisement

Log in

Direct Laser Writing of Microscale 3D Structures: Morphological and Mechanical Properties

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Microscale 3D structure realization nowadays is possible due to the direct laser writing (DLW)-photolithography. The DLW-photolithography technology provides a unique way to fabricate X-ray lenses with arbitrary shape and curvature radius less than 10 μm. However, an achievement of mechanically stable lithographic features is in demand for the fabrication of microoptical elements with high curvature values including X-ray lenses. According to this purpose, the research based on novel and promising methacrylate-containing material photocomposition for the DLW-photolithography is carried out. Improved solubility (1%wt) provides a large fabrication window, so it increases opportunities for use in the DLW-photolithography. A comprehensive study of the mechanical and morphological properties of the photocomposition makes it possible to determine the optimum DLW-photolithography parameters to fabricate mechanically-stable compound-refractive-lens (CRL) element. We use experimental methods of nanoindentation, confocal microscopy, and atomic force microscopy (AFM). The saturation value of reduced Young’s modulus equal to 2.00±0.20 GPa is reached at a laser power of 5 mW and at a speed of 180 μm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Maruo and S. Kawata, J. Microelectromech. Syst., 7, 411 (1998).

    Article  Google Scholar 

  2. Y. Bougdid and Z. Sekkat, Sci. Rep., 10, 10409 (2020).

    Article  ADS  Google Scholar 

  3. Q. Ji, J. Moughames, X. Chen, et al., Commun. Mater., 2, 93 (2021).

    Article  Google Scholar 

  4. G. E. Lio, A. Ferraro, T. Ritacco, et al., Adv. Mater., 33, 2008644 (2021.

    Article  Google Scholar 

  5. Y. Liu, H. Wang, J. Ho, et al., Nat. Commun., 10, 4340 (2019).

    Article  ADS  Google Scholar 

  6. A. Ovsianikov, B. Chichkov, P. Mente, et al., Int. J. Appl. Ceram. Technol., 4, 22 (2007).

    Article  Google Scholar 

  7. F. Klein, B. Richter, T. Striebel, et al., Adv. Mater., 23, 1341 (2011).

    Article  Google Scholar 

  8. D. Wu, Q.-D. Chen, L.-G. Niu, et al., Lab Chip, 9, 2391 (2009).

    Article  Google Scholar 

  9. P. Galajda and P. Ormos, J. Opt. B: Quantum Semiclass. Opt., 4, 78 (2002).

    Article  ADS  Google Scholar 

  10. L. Amato, Y. Gu, N. Bellini, et al., Lab Chip, 12, 1135 (2012).

    Article  Google Scholar 

  11. A. W. Schell, T. Neumer, Q. Shi, et al., Appl. Phys. Lett., 105, 231117 (2014).

    Article  ADS  Google Scholar 

  12. H. Wang, H. Wang, W. Zhang, and J. K. W. Yang, ACS Nano, 14, 10452 (2020).

    Article  Google Scholar 

  13. A. Asadollahbaik, S. Thiele, K. Weber, et al., ACS Photonics, 7, 88 (2020).

    Article  Google Scholar 

  14. T. Kondo, K. Yamasaki, S. Juodkazis, et al., Thin Solid Films, 453-454, 550 (2004).

    Article  Google Scholar 

  15. A. N. Shatokhin, A. O. Kolesnikov, P. V. Sasorov, et al., Opt. Express, 26, 19009 (2018).

    Article  ADS  Google Scholar 

  16. M. Lyubomirskiy, F. Koch, K. A. Abrashitova, et al., Opt. Express, 27, 8639 (2019).

    Article  ADS  Google Scholar 

  17. V. V. Aristov and L. G. Shabel’nikov, Phys. Usp., 51, 57 (2008).

  18. F. Seiboth, A. Schropp, and M. Scholz, Nat. Commun., 8, 1 (2017).

    Article  Google Scholar 

  19. M. I. Sharipova, T. G. Baluyan, K. A. Abrashitova, et al., Opt. Mater. Express, 11, 371 (2021).

    Article  ADS  Google Scholar 

  20. N. L. Popov, I. A. Artyukov, A. V. Vinogradov, and V. V. Protopopov, Phys. Usp., 63, 766 (2020).

    Article  ADS  Google Scholar 

  21. A. V. Pisarenko, R. D. Zvagelsky, D. A. Kolymagin, et al., Optik, 201, 163350 (2020).

    Article  ADS  Google Scholar 

  22. E. R. Zhiganshina, M. V. Arsenyev, D. A. Chubich, et al., Eur. Polym. J., 162, 110917 (2022).

    Article  Google Scholar 

  23. L. J. Jiang, Y. S. Zhou, W. Xiong, et al., Opt. Lett., 39, 3034 (2014).

    Article  ADS  Google Scholar 

  24. J. Bauer, A. Guell Izard, Y. Zhang, et al., Adv. Mater. Technol., 4, 1900146 (2019).

  25. A. Flores and F. J. Balta Calleja, Philos. Mag. (Abingdon), 78, 1283 (1998).

  26. A. M. Diez-Pascual, M. A. Gomez-Fatou, F. Ania, and A. Flores, Prog. Mater. Sci., 67, 1 (2015).

    Article  Google Scholar 

  27. D. Ziskind, S. Fleischer, K. Zhang, et al., “Compressive response of dentin micro-pillars,” in: R. Gilat and L. Banks-Sills (Eds.), Advances in Mathematical Modeling and Experimental Methods for Materials and Structures, Springer, Dordrecht, Netherlands (2009), Vol. 168, p. 187.

  28. R. P. Matital, D. A. Kolymagin, D. A. Chubich, et al., J. Sci.-Adv. Mater. Dev., 7, 100413 (2022).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei G. Vitukhnovsky.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, D.A., Kolymagin, D.A., Matital, R.P. et al. Direct Laser Writing of Microscale 3D Structures: Morphological and Mechanical Properties. J Russ Laser Res 44, 47–55 (2023). https://doi.org/10.1007/s10946-023-10106-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10106-0

Keywords

Navigation