Skip to main content
Log in

Detecting the Topological Charge of Optical Vortex Beams Using a Focused Surface Plasmonic Beam Generator

  • Published:
Journal of Russian Laser Research Aims and scope

Detecting the phase and polarization singularities of optical vortex (OV) beams is essential for integrated optical systems. So far, achieving the integration and further minimizing and stabilizing the orbital angular momentum (OAM) detector in more robust ways remain goals of related researches. In this study, we propose a semicircular nano-slit array to couple an OV beam to a focused surface plasmon beam (FSPB). The electric field intensities and movement of peak positions of FSPB are found to strongly depend on the topological charges of the incident OV beam. The positions of the FSPB can be controlled by an incident OV beam, which is left-circularly polarized (LCP) or right-circularly polarized (RCP). These results can be utilized for dynamical detection of topological charges values, positive or negative, odd or even, and polarization states of OV beams by a simple and intuitive method. Also, the electric field intensities of FSPB can be dynamically controlled by changing the structural parameters. These results provide an integrated and miniaturized method for detecting the topological charges of incident OV beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, Y. X. Ren, M. Chen, et al., Adv. Photonics, 3, 3 (2021).

    Article  Google Scholar 

  2. Y. Lu, X. Feng, Q. Wang, et al., Nano Lett., 21, 7699 (2021).

    Article  ADS  Google Scholar 

  3. W. Wang, T. Yokozeki, R. Ishijima, et al., Opt. Express, 14, 120 (2006).

    Article  ADS  Google Scholar 

  4. C. L. Zhang, C. J. Min, L. P. Du, et al., Appl. Phys. Lett., 108, 201601 (2016).

    Article  ADS  Google Scholar 

  5. J. Ng, Z. Lin, and C. T. Chan, Phys. Rev. Lett., 104, 103601 (2010).

    Article  ADS  Google Scholar 

  6. F. F. Pang, L. N. Xiang, H. H. Liu, et al., J. Lightw. Technol., 39, 3740 (2021).

    Article  ADS  Google Scholar 

  7. C. Zhang, R. Wang, C. Min, et al., Appl. Phys. Lett., 102, 011114 (2013).

    Article  ADS  Google Scholar 

  8. Y. Yang, G. Thirunavukkarasu, M. Babiker, et al., Phys. Rev. Lett., 119, 9 (2017).

    Google Scholar 

  9. L. Chen, Y. Liu, L. Zhao, et al., Opt. Mater. Express, 12, 1163 (2022).

    Article  ADS  Google Scholar 

  10. Z. Shao, J. Zhu, Y. Zhang, et al., Opt. Lett., 43, 6 (2018).

    ADS  Google Scholar 

  11. H. Zhou, H. Song, Z. Zhao, et al., Opt. Lett., 46, 4722 (2021).

    Article  ADS  Google Scholar 

  12. Y. Yang, Q. Zhao, L. Liu, et al., Phys. Rev. A, 12, 6 (2019).

    Google Scholar 

  13. J. Ni, Y. Hu, S. Liu, et al., Opt. Lett., 46, 6 (2021).

    Google Scholar 

  14. X. F. Wang, J. F. Wang, M. B. Yan, et al., Opt. Mater. Express, 12, 1271 (2022).

    Article  ADS  Google Scholar 

  15. Y. Yang, L. Wu, Y. Liu, et al., Nano Lett., 20, 6774 (2020).

    Article  ADS  Google Scholar 

  16. M. Piccardo, M. De Oliveira, A. Toma, et al., Nat. Photonics, 16, 359 (2022).

    Article  ADS  Google Scholar 

  17. A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, Sci. Rep., 6, 1 (2016); https://doi.org/10.1038/s41598-016-0015-2

  18. F. Yue, D. Wen, C. Zhang, et al., Adv. Mater., 29, 1603838 (2017).

    Article  Google Scholar 

  19. Z. Hao, W. Liu, Z. Li, et al., Laser Photonics Rev., 15, 2100207.1 (2021).

  20. W. Liu, Z. Li, Z. Li, et al., Adv. Mater., 31, 1901729 (2019).

    Article  Google Scholar 

  21. J. Jin, X. Li, M. Pu, et al., Science, 24, 2 (2021).

    Google Scholar 

  22. G. H. Kai, T. X. Yang, et al., Nanoscale, 10, 19154 (2018).

    Article  Google Scholar 

  23. Y. Wen, I. Chremmos, Y. Chen, et al., Phys. Rev. Lett., 120, 19 (2018).

    Google Scholar 

  24. P. Genevet, J. Lin, M. A. Katsl, et al., Nat. Commun., 3, 1278 (2012).

    Article  ADS  Google Scholar 

  25. G. Rui, B. Gu, Y. Cui, et al., Sci. Rep., 6, 28262 (2016).

    Article  ADS  Google Scholar 

  26. J. M. Hickmann, E. Fonseca, W. C. Soares, et al., Phys. Rev. Lett., 105, 5 (2010).

    Article  Google Scholar 

  27. G. C. G. Berkhout and M. W. Beijersbergen, Phys. Rev. Lett., 101, 10 (2008).

    Article  Google Scholar 

  28. Q. I. Zhao, M. Dong, Y. Bai, et al., Res. Photonics, 8, 5(2020).

    Article  Google Scholar 

  29. S. Wei, T. Lei, L. Du, et al., Opt. Express, 23, 30143 (2015).

    Article  ADS  Google Scholar 

  30. J. Chen, X. Chen, T. Li, et al., Rev. Laser Photonics, 12, 1700331 (2018).

    Article  ADS  Google Scholar 

  31. F. Feng, G. Si, C. Min, et al., Light: Sci. Appl., 9, 95 (2020).

    Google Scholar 

  32. A. P. Liu, X. Xiong, X. F. Ren, et al., Sci. Rep., 3, 6146 (2013).

    Google Scholar 

  33. K. Sueda, G. Miyaji, N. Miyanaga, et al., Opt. Express, 12, 3548 (2004).

    Article  ADS  Google Scholar 

  34. I. Epstein and A. Arie, Phys. Rev. Lett., 112, 023903 (2014).

    Article  ADS  Google Scholar 

  35. B. Lee, S. Kim, H. Kim, et al., Prog. Quantum Electron., 34, 2 (2010).

    Article  Google Scholar 

  36. C. Zhao, J. Wang, X. Wu, et al., Appl. Phys. Lett., 94, 11 (2009).

    Google Scholar 

  37. M. A. Ordal, L. L. Long, R. J. Bell, et al., Appl. Optics, 22, 1099 (1983).

    Article  ADS  Google Scholar 

  38. J. Leach, M. J. Padgett, S. M. Barnett, et al., Phys. Rev. Lett., 88, 25 (2002).

    Article  Google Scholar 

  39. H. Zhou, S. Yan, J. Dong, et al., Opt. Lett., 39, 11 (2014).

    Google Scholar 

  40. J. Qi, W. Wang, X. Li, et al., Opt. Eng., 53, 4 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Li, X., Li, X. et al. Detecting the Topological Charge of Optical Vortex Beams Using a Focused Surface Plasmonic Beam Generator. J Russ Laser Res 44, 25–35 (2023). https://doi.org/10.1007/s10946-023-10104-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10104-2

Keywords

Navigation