Skip to main content
Log in

AlGaN-Based Deep UV Laser Diodes without an Electron Blocking Layer and with a Reduced Aluminum Composition of Quantum Barriers

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

An electron blocking layer (EBL) is often utilized in the p-type region of AlGaN-based deep ultraviolet laser diodes (DUV LDs) to control electron overflow. However, Al-rich semiconductor DUV LD EBLs can be difficult to p-doping and have a highly-complicated structure. Furthermore, the composition of Al in quantum barriers (QBs) of multiple quantum wells (MQWs) affects the performance of AlGaN-based DUV laser diodes. Omitting the EBL and reducing the Al content of the QBs can enhance the optical confinement and optical output power. Observing the performance parameters, such as the optical confinement factor (OCF), emitted power, band diagram, carrier concentration, and stimulated recombination, may be an effective way to monitor these changes. In this paper, using the crosslight software LASTIP, we simulate and compare three DUV LD devices with a nominal wavelength of 267.5 nm. In contrast to the reference DUV LD with a p-type EBL, the proposed EBL-free DUV LD with reduced Al-composition QBs is applied in MQWs; this results in a 21% improvement in the OCF and an increase in the output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yun-Fei, W. Zhen-Fu, L. Te, and Y. Guo-Wen, Acta Phys. Sinica, 66, 104202 (2017); https://doi.org/10.7498/aps.66.104202

    Article  Google Scholar 

  2. S. M. Sze, Y. Li, and K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons (2021).

  3. Y. K. Kuo, J. Y. Chang, and M. C. Tsai, Opt. Lett., 35, 3285 (2010).

    Article  Google Scholar 

  4. H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, Appl. Phys. Express, 3, 031002 (2010).

    Article  Google Scholar 

  5. H. Sun, Y. J. Park, K. H. Li, et al., Appl. Phys. Lett., 111, 122106 (2017).

    Article  Google Scholar 

  6. Li, L., Zhang, Y., Xu, S., et al., Materials, 10, 1221 (2017).

    Article  Google Scholar 

  7. Z. H. Zhang, S. W. Huang Chen, C. Chu, et al., Nanoscale Res. Lett., 13, 122 (2018).

    Article  Google Scholar 

  8. M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 94, 091903 (2009).

    Article  Google Scholar 

  9. H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, Appl. Phys. Express, 1, 051101 (2008).

    Article  Google Scholar 

  10. S. I. Inoue, N. Tamari, and M. Taniguchi, Appl. Phys. Lett., 110, 141106 (2017).

    Article  Google Scholar 

  11. G. Alahyarizadeh, M. Amirhoseiny, and Z. Hassan, Opt. Laser Technol., 76, 106 (2016).

    Article  Google Scholar 

  12. J. R. Chen, C. H. Lee, T. S. Ko, et al., J. Lightw. Technol., 26, 329 (2008).

    Article  Google Scholar 

  13. W. Yang, D. Li, N. Liu, et al., Appl. Phys. Lett., 100, 031105 (2012).

    Article  Google Scholar 

  14. Y. Zhang, T. T. Kao, J. Liu, et al., J. Appl. Phys., 109, 083115 (2011).

    Article  Google Scholar 

  15. S. N. Lee, S. Y. Cho, H. Y. Ryu, et al., Appl. Phys. Lett., 88, 111101 (2006).

    Article  Google Scholar 

  16. Y. Xing, D. G. Zhao, D. S. Jiang, et al., Chin. Phys. B, 27, 028101 (2018).

    Article  Google Scholar 

  17. S. U. Khan, S. M. Nawaz, M. I. Niass, et al., J. Russ. Laser Res., 43, 370 (2022).

    Article  Google Scholar 

  18. M. N. Sharif, M. I. Niass, J. J. Liou, et al., Semiconductor Sci. Technol., 36, 055017 (2021).

    Article  Google Scholar 

  19. Y. A. Yin, N. Wang, S. Li, et al., Appl. Phys. A, 119, 41 (2015).

    Article  Google Scholar 

  20. Y. Zhang, L. Yu, K. Li, et al., Superlattices Microstructures, 82, 151 (2015).

    Article  Google Scholar 

  21. X. Fan, H. Sun, X. Li, et al., Superlattices Microstructures, 88, 467 (2015).

    Article  Google Scholar 

  22. M. N. Sharif, M. Usman, M. I. Niass, et al., Nanotechnology, 33, 075205 (2021).

    Article  Google Scholar 

  23. Z. H. Zhang, S. W. Huang Chen, Y. Zhang, et al., ACS Photon., 4, 1846 (2017).

    Article  Google Scholar 

  24. J. Simon, V. Protasenko, C. Lian, et al., Science, 327, 60 (2010).

    Article  Google Scholar 

  25. L. Zhang, K. Ding, J. C. Yan, et al., Appl. Phys. Lett., 97, 062103 (2010).

    Article  Google Scholar 

  26. Z. Ren, Y. Lu, H. H. Yao, et al., IEEE Photon. J., 11, 8200511 (2019); https://doi.org/10.1109/JPHOT.2019.2902125

    Article  Google Scholar 

  27. B. Cheng, S. Choi, J. E. Northrup, et al., Appl. Phys. Lett., 102, 231106 (2013).

    Article  Google Scholar 

  28. Y. Chen, H. Wu, E. Han, et al., Appl. Phys. Lett., 106, 162102 (2015).

    Article  Google Scholar 

  29. J. Li, W. Yang, S. Li, et al., Appl. Phys. Lett., 95, 151113 (2009).

    Article  Google Scholar 

  30. Y. Aoyagi, M. Takeuchi, S. Iwai, and H. Hirayama, Appl. Phys. Lett., 99, 112110 (2010).

    Article  Google Scholar 

  31. Y. Yin, Z. Hu, M. U. Ali, et al., Light: Adv. Manufacturing, 3, 36 (2022); https://doi.org/10.37188/lam.2022.036

    Article  Google Scholar 

  32. E. T. Poh, S. X. Lim, and C. H. Sow, Light: Adv. Manufacturing, 3, 4 (2022); https://doi.org/10.37188/lam.2022.004

  33. L. Yang, F. Mayer, U. H. Bunz, et al., Light: Adv. Manufacturing, 2, 296 (2021).

    Google Scholar 

  34. H. Amano, R. Collazo, C. De Santi, et al., J. Phys. D: Appl. Phys., 53, 503001 (2020).

    Article  Google Scholar 

  35. L. Lu, Z. Wan, F. Xu, et al., Superlattices Microstructures, 104, 240 (2017).

    Article  Google Scholar 

  36. L. Lu, Y. Zhang, F. Xu, et al., Superlattices Microstructures, 118, 55 (2018).

    Article  Google Scholar 

  37. J. Martín and M. Sánchez, Phys. Status Solidi (b), 242, 1846 (2005).

    Article  Google Scholar 

  38. Z. H. Zhang, J. Kou, S. W. H. Chen, et al., Photonics Res., 7, B1-B6 (2019).

    Article  Google Scholar 

  39. H. Yu, Q. Chen, Z. Ren, et al., IEEE Photonics J., 11, 8201006 (2019); https://doi.org/10.1109/JPHOT.2019.2922280

    Article  Google Scholar 

  40. H. P. T. Nguyen, M. Djavid, S. Y. Woo, et al., Sci. Rep., 5, 7744 (2015); https://doi.org/10.1038/srep07744

    Article  Google Scholar 

  41. B. Jain, R. T. Velpula, H. Q. T. Bui, et al., Opt. Express, 28, 665 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Ullah Khan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Yao, W., Aoxiang, Z. et al. AlGaN-Based Deep UV Laser Diodes without an Electron Blocking Layer and with a Reduced Aluminum Composition of Quantum Barriers. J Russ Laser Res 43, 694–701 (2022). https://doi.org/10.1007/s10946-022-10096-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10096-5

Keywords

Navigation