Skip to main content
Log in

Effect of Nonequilibrium Electron-Energy Distributions on Efficiency of Rydberg State Population via Resonant Recombination

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study how the efficiencies of resonant electron–ion recombination processes in rare-gas-mixture plasmas depend on the deviation of the electron-energy distribution functions from the Maxwellian distribution. Our calculations demonstrate that nonequilibrium distributions commonly encountered in the experiment may lead to strong increases or decreases of the respective rate constants of three-body and dissociative recombination processes. The dependences of the results on the electronic temperature and on the principal quantum number of the Rydberg state in the final channels of the reactions are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Larsson and A. E. Orel, Dissociative Recombination of Molecular Ions, Cambridge University Press (2008).

    Book  Google Scholar 

  2. Y. Hahn, Rep. Prog. Phys., 60, 691 (1997).

    Article  Google Scholar 

  3. M. Endo and R. F. Walter, Gas Lasers, CRC Press, Boca Raton (2007).

    Google Scholar 

  4. Z. J. Mezei, K. Chakrabarti, M. D. E. Epée, et al., ACS Earth Space Chem., 3, 2376 (2019).

    Article  Google Scholar 

  5. W. T. Silfvast, Laser Fundamentals, Cambridge University Press (2004).

    Book  Google Scholar 

  6. O. Novotný, P. Wilhelm, D. Paul, et al., Science, 365, 676 (2019).

    Article  Google Scholar 

  7. X. Jiang, H. Liu, Y. Zhang, et al., Plasma Sources Sci. Technol., 31, 045016 (2022).

    Article  Google Scholar 

  8. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas, Springer, New York (1987).

    Book  Google Scholar 

  9. V. S. Lebedev, K. S. Kislov, and A. A. Narits, Plasma Sources Sci. Technol., 29, 025002 (2020).

    Article  Google Scholar 

  10. V. S. Lebedev, K. S. Kislov, and A. A. Narits, J. Exp. Theor. Phys., 130, 579 (2020).

    Article  Google Scholar 

  11. J. Meichsner, M. Schmidt, R. Schneider, and H.-E. Wagner, Nonthermal Plasma Chemistry and Physics, CRC Press, Boca Raton (2013).

    Google Scholar 

  12. L. L. Alves, A. Bogaerts, V. Guerra, and M. M. Turner, Plasma Sources Sci. Technol., 27, 023002 (2018).

    Article  Google Scholar 

  13. K. S. Kislov, A. A. Narits, and V. S. Lebedev, Opt. Spectrosc., 128, 448 (2020).

    Article  Google Scholar 

  14. V. S. Zuev, J. Russ. Laser Res., 19, 23 (1998).

    Article  Google Scholar 

  15. S. V. Mit’ko and V. N. Ochkin, J. Russ. Laser Res., 17, 259 (1996).

    Article  Google Scholar 

  16. A. Fridman and L. A. Kennedy, Plasma Physics and Engineering, CRC Press, Boca Raton, 2nd ed. (2011).

    Google Scholar 

  17. Y. Amemiya, J. Phys. Soc. Jpn., 66, 1335 (1997).

    Article  Google Scholar 

  18. R. A. Phaneuf, C. C. Havener, G. H. Dunn, and A. Müller, Rep. Prog. Phys., 62, 1143 (1999).

    Article  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon, Oxford (1997).

    MATH  Google Scholar 

  20. O. K. Rice, J. Chem. Phys., 1, 375 (1933).

    Article  Google Scholar 

  21. P. G. Burke and J. Tennyson, Mol. Phys., 103, 2537 (2005).

    Article  Google Scholar 

  22. T. N. Rescigno, C. W. McCurdy, A. E. Orel, and B. H. Lengsfield, “The Complex Kohn Variational Method,” in: W. M. Huo and F. A. Gianturco (Eds.), Computational Methods for Electron–Molecule Collisions, Plenum Press, New York (1995).

  23. V. A. Ivanov, V. S. Lebedev, and V. S. Marchenko, Sov. Phys. JETP, 67, 2225 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Lebedev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislov, K.S., Narits, A.A. & Lebedev, V.S. Effect of Nonequilibrium Electron-Energy Distributions on Efficiency of Rydberg State Population via Resonant Recombination. J Russ Laser Res 43, 653–666 (2022). https://doi.org/10.1007/s10946-022-10092-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10092-9

Keywords

Navigation