Skip to main content
Log in

Backward Projection Imaging of Through-Wall Radar Based on Airspace Nonuniform Sampling

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Currently, backward projection (BP) imaging is widely used in different kinds of through-wall radars. This imaging method is used to make the pixel points corresponding to each echo signal consistent in the time domain by compensating for the time delay of information between the transceiver antenna and the detection target and performing coherent superposition to finally project the target in space. Because of this property, the BP imaging algorithm is computationally intense and has a long computation time, which limits its application in practical engineering. In this paper, we propose backward projection imaging of wall-penetrating radar with nonuniform sampling in the air domain to address the problem of the imaging speed of wall penetrating radar. This is a universal optimization algorithm that optimizes the imaging process of radar in scenes with sparse targets to obtain better imaging results in less time. A stepped-frequency continuous waveform (SFCW) ultra-wideband (UWB) multiple-input multiple-output (MIMO) radar is prepared for the experiments, and the imaging time of the algorithm is verified using real-world data. The results show that the method can achieve real-time imaging based on existing technology, laying a firm foundation for the practical application of through-wall radar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wood, R. Wood, and M. Charnley, Results Appl. Math., 7, 100106 (2020); https://doi.org/10.1016/j.rinam.2020.100106

    Article  Google Scholar 

  2. T. Jin and Z. Zhou, IEEE Trans. Geosci. Remote Sens., 45, 3561 (2007); https://doi.org/10.1109/TGRS.2007.906138

    Article  ADS  Google Scholar 

  3. A. F. Yegulalp, “Fast backprojection algorithm for synthetic aperture radar,” in Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249), IEEE, pp. 60–65 (1999); https://doi.org/10.1109/NRC.1999.767270

  4. G. Sun and F. Zhang, IEEE Access, 8, 117080 (2020); https://doi.org/10.1109/ACCESS.2020.3004860

    Article  Google Scholar 

  5. X. Zhang, Y. Sun, H. Liu, et al., Inf. Sci., 550, 129 (2020); https://doi.org/10.1016/j.ins.2020.10.039

    Article  Google Scholar 

  6. M. Bao, S. Zhou, L. Yang, et al., IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 1728 (2021); https://doi.org/10.1109/JSTARS.2020.3002394

    Article  ADS  Google Scholar 

  7. L. M. H. Ulander, H. Hellsten, and G. Stenstrom, IEEE Trans. Aerosp. Electron. Syst., 39, 760 (2003); https://doi.org/10.1109/TAES.2003.1238734

    Article  ADS  Google Scholar 

  8. Y. H. Li, Q. Song, P. Y. Wang, et al., Acta Electron. Sinica, 39, 518 (2011); https://doi.org/10.3724/SP.J.1077.2010.10636

    Article  Google Scholar 

  9. T. D. R. Hartley, A. R. Fasih, C. A. Berdanier, et al., “Investigating the use of GPU-accelerated nodes for SAR image formation,” in: 2009 IEEE International Conference on Cluster Computing and Workshops, pp. 1-8 (2009); https://doi.org/10.1109/CLUSTR.2009.5289125

  10. O. Ponce, P. Prats, M. Rodriguez-Cassola, et al., “Processing of Circular SAR trajectories with Fast Factorized Back-Projection,” in: 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 3692-3695 (2011); https://doi.org/10.1109/IGARSS.2011.6050026

  11. Y. Luo, F. Zhao, N. Li, and H. Zhang, IEEE Geosci. Remote. Sens. Lett., 15, 1244 (2018); https://doi.org/10.1109/LGRS.2018.2829483

    Article  ADS  Google Scholar 

  12. R. Cavicchioli, J. Cheng Hu, E. Loli Piccolomini, et al., Sci. Rep., 10, 43 (2020); https://doi.org/10.1038/s41598-019-56920-y

    Article  ADS  Google Scholar 

  13. H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger, “Fast GPU-Based CT Reconstruction using the Common Unified Device Architecture (CUDA),” in: 2007 IEEE Nuclear Science Symposium Conference Record, pp. 4464-4466 (2007); https://doi.org/10.1109/NSSMIC.2007.4437102

  14. T. D. R. Hartley, A. R. Fasih, C. A. Berdanier, et al., “Investigating the use of GPU-accelerated nodes for SAR image formation,” in: 2009 IEEE International Conference on Cluster Computing and Workshops, pp. 1-8 (2009); https://doi.org/10.1109/CLUSTR.2009.5289125

  15. P. Xueming, W. Yanping, T. Weixian, et al., “GPU acceleration of 3D SAR imaging using range migration techniques,” in: 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), pp. 1-4 (2011);

  16. S. Jun, M. Long, and Z. Xiaoling, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 2035 (2013); https://doi.org/10.1109/JSTARS.2013.2238891s

    Article  ADS  Google Scholar 

  17. Z. Hu, Z. Zeng, K. Wang, et al., Remote Sens., 11, 1867 (2019); https://doi.org/10.3390/rs11161867

    Article  ADS  Google Scholar 

  18. D. L. Donoho, IEEE Trans. Inf. Theory, 52, 1289 (2006); https://doi.org/10.1109/TIT.2006.871582

    Article  Google Scholar 

  19. M. Leigsnering, C. Debes, and A. M. Zoubir, “Compressive sensing in through-the-wall radar imaging,” in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4008-4011 (2011); https://doi.org/10.1109/ICASSP.2011.5947231

  20. E. J. Candes and M. B. Wakin, IEEE Signal Process. Mag., 25, 21 (2008); https://doi.org/10.1109/MSP.2007.914731

    Article  ADS  Google Scholar 

  21. Y. P. Sun, S. Zhang, Z. Cui, et al., Technol. Health Care, 24, S757 (2016); https://doi.org/10.3233/THC-161205

    Article  Google Scholar 

  22. M. Leigsnering, M. Amin, F. Ahmad, and A. M. Zoubir, ” IEEE Signal Process. Mag., 31, 110 (2014); https://doi.org/10.1109/MSP.2014.2312203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Liu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Liu, Y., Wang, L. et al. Backward Projection Imaging of Through-Wall Radar Based on Airspace Nonuniform Sampling. J Russ Laser Res 43, 520–531 (2022). https://doi.org/10.1007/s10946-022-10078-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10078-7

Keywords

Navigation