Skip to main content
Log in

Global Geometric Measure of Quantum Discord and Entanglement of Formation in Multipartite Glauber Coherent States

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The main purpose of this work is to evaluate quantum correlations in even and odd superpositions of Glauber coherent states. As measures of bipartite and multipartite correlations, we use the entanglement of formation (EOF), quantum discord, and its geometric variant. The other important facet of this work deals with the global geometric quantum discord evaluated by adopting different splitting schemes of the multipartite even and odd Glauber coherent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Glauber, Phys. Rev., 131, 2766 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Ollivier and W. H. Zurek, Phys. Rev. Lett., 88, 017901 (2001).

    Article  ADS  Google Scholar 

  3. L. Henderson, and V. Vedral, J. Phys. A: Math. Gen., 34, 6899 (2001).

    Article  ADS  Google Scholar 

  4. J. Oppenheim, M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett., 89, 180402 (2002).

    Article  ADS  Google Scholar 

  5. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A, 71, 062307 (2005).

    Article  ADS  Google Scholar 

  6. B. Groisman, S. Popescu, and A. Winter, Phys. Rev. A, 72, 032317 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. Vedral, Rev. Mod. Phys., 74, 197 (2002).

    Article  ADS  Google Scholar 

  8. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2009).

    Article  ADS  Google Scholar 

  9. O. Gühne and G. Tóth, Phys. Rep., 474, 1 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  10. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A, 54, 3824 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Popescu and D. Rohrlich, Phys. Rev. A, 56, R3319 (1997).

    Article  ADS  Google Scholar 

  12. D. Bruss, J. Math. Phys., 43, 4237 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Luo, Phys. Rev. A, 77, 042303 (2008).

    Article  ADS  Google Scholar 

  14. K. M. Fan and G. F. Zhang, Eur. Phys. J., 68, 163 (2014).

    ADS  Google Scholar 

  15. V. Vedral, Phys. Rev. Lett., 90, 050401 (2003).

    Article  ADS  Google Scholar 

  16. J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, Phys. Rev. A, 80, 04410 (2009).

    Article  Google Scholar 

  17. R. Dillenschneider, Phys. Rev. B, 78, 224413 (2008).

    Article  ADS  Google Scholar 

  18. M. S. Sarandy, Phys. Rev. A, 80, 022108 (2009).

    Article  ADS  Google Scholar 

  19. T. Werlang et al., ??? Phys. Rev. Lett., 105, 095702 (2010).

  20. J. Maziero et al, ??? Phys. Rev. A, 82, 012106 (2010).

  21. Y.-X. Chen and S. W. Li, Phys. Rev. A. 81, 032120 (2010). ???

  22. A. Shabani and D. A. Lidar, Phys. Rev. Lett., 102, 100402 (2009).

    Article  ADS  Google Scholar 

  23. A. Ferraro, L. Aolita, D. Cavalcanti, et al., Phys. Rev. A, 81, 052318 (2010).

    Article  ADS  Google Scholar 

  24. L. Mazzola, J. Piilo, and S. Maniscalco, Phys. Rev. Lett., 104, 200401 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  25. W. C. Qiang and L. Zhang, Phys. Lett. B, 742, 383 (2015).

    Article  ADS  Google Scholar 

  26. J. Feng-Jian, L. Hai-Jiang, Y. Xin-Hu, and S. Ming-Jun, Chin. Phys. B, 22, 040303 (2013).

    Article  Google Scholar 

  27. B. Dakic, V. Vedral, and C. Brukner, Phys. Rev. Lett., 105, 190502 (2010).

    Article  ADS  Google Scholar 

  28. F. M. Paula, T. R. de Oliveira, and M. S. Sarandy, Phys. Rev. A, 87, 064101 (2013).

    Article  ADS  Google Scholar 

  29. S. Luo and S. Fu, Phys. Rev. A, 82, 034302 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  30. A. S. M. Hassan, B. Lari, and P. S. Joag, Phys. Rev. A, 85, 024302 (2012).

    Article  ADS  Google Scholar 

  31. M. Daoud, R. A. Laamara, and W. Kaydi, J. Phys. A: Math. Theor., 46, 395302 (2013).

    Article  Google Scholar 

  32. H. Baba, W. Kaydi, M. Daoud, and M. Mansour, Int. J. Mod. Phys. B, 31, 2050237 (2020).

    Article  Google Scholar 

  33. F. F. Fanchini, L. K. Castelano, M. F. Cornelio, and M. C. De Oliveira, New J. Phys., 14, 01302727 (2012).

    Article  Google Scholar 

  34. M. Okrasa and Z. Walczak, Eur. Phys. Lett., 96, 60003 (2011).

    Article  ADS  Google Scholar 

  35. I. Chakrabarty, P. Agrawal, and A. K. Pati, Eur. Phys. J., 65, 605 (2011).

    ADS  Google Scholar 

  36. C. C. Rulli and M. S. Sarandy, Phys. Rev. A, 84, 042109 (2011).

    Article  ADS  Google Scholar 

  37. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

  38. S. Hill and W. K. Wootters, Phys. Rev. Lett., 78, 5022 (1997).

    Article  ADS  Google Scholar 

  39. T. M. Cover and J. A. Thomas, Element. Inf. Theor., 2, 1 (1991).

    Google Scholar 

  40. M. Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A, 81, 042105 (2010).

    Article  ADS  Google Scholar 

  41. Z. Ma, Z. Chen, and F. F. Fanchini, New. J. Phys., 15, 043023 (2013).

    Article  ADS  Google Scholar 

  42. M. Daoud and R. A. Laamara, Phys. Lett. A, 35, 2361 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Baba.

Additional information

†This manuscript was submitted as a regular paper but the Editorial Board of Journal of Russian Laser Research decided to publish it in this Special issue dedicated to the memory of Dr. Vladimir A. Andreev, since the manuscript contains interesting results related to Andreev’s scientific activity; this fact was also pointed out by referees, who are simultaneously the authors of this issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, H., Mansour, M. & Daoud, M. Global Geometric Measure of Quantum Discord and Entanglement of Formation in Multipartite Glauber Coherent States. J Russ Laser Res 43, 124–137 (2022). https://doi.org/10.1007/s10946-022-10029-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10029-2

Keywords

Navigation