Skip to main content
Log in

Nonclassical Features of Intra-Cavity and Transmitted Fields in a Coherently-Pumped Correlated-Emission Laser with Injected Thermal Light

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We discuss effects of phase fluctuations and thermal light on the entanglement, squeezing, and intensity of the two-mode intra-cavity and transmitted fields generated by a coherently-pumped correlated-emission laser. The three-level atoms are initially prepared in the ground and excited states with equal probabilities, and a classical pumping field incoming from an external source via the input mirror induces the atomic coherence accountable for nonclassical features in the quantum system. In addition, the laser cavity contains a nondegenerate parametric amplifier and is seeded by a two-mode thermal light. We investigate the entanglement, applying the inseparability criterion for a continuous variable system by Duan et al. We find that the phase fluctuation significantly depletes the amount of squeezing and hence entanglement in the weak pumping regime. However, the classical pumping field completely overcomes the effect of phase fluctuations in the strong pumping regime so that the intra-cavity and transmitted entanglement and squeezing of the two-mode radiation remain strong in this regime. Moreover, the maximum achievable amount of squeezing and entanglement of transmitted fields in the weak and strong pumping regimes is unaffected by the thermal decoherence. On the other hand, phase fluctuations as well as thermal noise amplify the intensity of the intra-cavity and transmitted fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Lu, F. X. Zhao, and J. Bergou, Phys. Rev. A, 39, 5189 (1989).

    Article  ADS  Google Scholar 

  2. J. Anwar and M. S. Zubairy, Phys. Rev. A, 49, 481 (1994).

    Article  ADS  Google Scholar 

  3. N. A. Ansari, J. G. Banacloche, and M. S. Zubairy, Phys. Rev. A, 41, 5179 (1990).

    Article  ADS  Google Scholar 

  4. E. Alebachew, Opt. Commun., 280, 133 (2007).

    Article  ADS  Google Scholar 

  5. Y. H. Ma and E. Wu, JETP Lett., 93, 233 (2011).

    Article  ADS  Google Scholar 

  6. S. Ullah, H. S. Qureshi, G. Tiaz, et al., Appl. Opt., 58, 197 (2019).

    Article  ADS  Google Scholar 

  7. W. KeQuan, and F. QiuBo, Sci. China. Ser. G: Phys. Mech. & Astron., 52, 1307 (2009)

    Article  Google Scholar 

  8. R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, Phys. Rev. A, 83, 054304 (2011).

    Article  ADS  Google Scholar 

  9. P. D. Drummond and Z. Ficek, Quantum Squeezing, Springer Verlag, Berlin, Heidelberg (2004).

    Book  MATH  Google Scholar 

  10. A. Sorensen and K. Molmer, Phys. Rev. Lett., 83, 2274 (1999).

    Article  ADS  Google Scholar 

  11. N. C. Menicucci, P. V. Loock, M. G. C. Weedbrook, et al., Phys. Rev. Lett., 97, 110501 (2006).

    Article  ADS  Google Scholar 

  12. I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, Phys. Rev. Lett., 114, 060403 (2015).

    Article  ADS  Google Scholar 

  13. V. Giovannetti, S. Lloyd, and L. Maccone, Nature, 412, 417 (2001).

    Article  ADS  Google Scholar 

  14. A. Furusawa, J. L. Sörensen, S. L. Braunstein, et al., Science, 282, 706 (1998).

    Article  ADS  Google Scholar 

  15. T. Aoki, G. Takahashi, T. Kajiya, et al., Nature Phys., 7, 541 (2009).

    Article  ADS  Google Scholar 

  16. M. Lassen, M. Sabuncu, A. Huck, et al., Nature Photon.. 4, 700 (2010).

    Article  ADS  Google Scholar 

  17. N. Treps, U. Andersen, B. Buchler, et al., Phys. Rev. Lett., 88, 203601 (2002).

    Article  ADS  Google Scholar 

  18. M. A. Taylor, J. Janousek, V. Daria, et al., Nature Photon., 7, 229 (2013).

    Article  ADS  Google Scholar 

  19. A. Einstein, B. Podolsky, and R. Rosen, Phys. Rev., 47, 777 (1935).

    Article  ADS  Google Scholar 

  20. S. Bell, J. Phys., 1, 195 (1964).

    Google Scholar 

  21. K. Heshami, D. G. England, P. C. Humphreys, et al., J. Mod. Opt., 63, 2005 (2016).

    Article  ADS  Google Scholar 

  22. C. H. Bennett and D. P. DiVincenzo, Nature, 404, 247 (2000).

    Article  ADS  Google Scholar 

  23. S. Barzanjeh, S. Pirandola, and C. Weedbrook, Phys. Rev. A, 88, 042331 (2013).

    Article  ADS  Google Scholar 

  24. J. G. Ren, P. Xu, H. L. Yong, et al., Nature, 549, 70 (2017).

    Article  ADS  Google Scholar 

  25. C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys., 89, 035002 (2017).

    Article  ADS  Google Scholar 

  26. W. Zhong, G. Cheng, and X. Hu, Laser Phys. Lett., 15, 065204 (2018).

    Article  ADS  Google Scholar 

  27. C. Gashu, Int. J. Opt., 2020, 12 (2020).

    Article  Google Scholar 

  28. M. Reboiro, O. Civitarese, and D. Tielas, J. Russ. Laser Res., 35, 110 (2014).

    Article  Google Scholar 

  29. H. Xiong, M. Scully, and M. Zubairy, Phys. Rev. Lett., 94, 023601 (2005).

    Article  ADS  Google Scholar 

  30. T. Abebe and C. G. Feyisa, Braz. J. Phys., 50, 495 (2020).

    Article  ADS  Google Scholar 

  31. S. Tesfa, J. Phys. B: At. Mol. Opt. Phys., 41, 055503 (2008).

    Article  ADS  Google Scholar 

  32. C. Gashu, E. Mosisa, and T. Abebe, Adv. Math. Phys., 2020, 14 (2020).

    Article  Google Scholar 

  33. T. Abebe, N. Gemechu, C. Gashu, et al., Int. J. Opt., 2020, 11 (2020).

    Article  Google Scholar 

  34. T. Abebe, N. Gemechu, K. Shogile, et al., Rom. J. Phys., 65, 107 (2020).

    Google Scholar 

  35. C. G. Feyisa, T. Abebe, N. Gemechu, and J. Amsalu, J. Russ. Laser. Res., 41, 563 (2020).

    Article  Google Scholar 

  36. C. G. Feyisa, T. Abebe, N. Gemechu, and J. Amsalu, Eur. Phys. J. Plus, 36, 72 (2021).

    Article  Google Scholar 

  37. C. G. Feyisa and T. Abebe, Phys. Scr., 95, 075105 (2020).

    Article  ADS  Google Scholar 

  38. C. G. Feyisa, Braz. J. Phys., 50, 379 (2020).

    Article  ADS  Google Scholar 

  39. S. Tesfa, Phys. Rev. A, 84, 023809 (2011).

    Article  ADS  Google Scholar 

  40. E. A. Sete, Phys. Rev. A, 84, 063808 (2011).

    Article  ADS  Google Scholar 

  41. M. Majeed and M. S. Zubairy, Phys. Rev. A, 44, 4688 (1991).

    Article  ADS  Google Scholar 

  42. C. M. Caves, Phys. Rev. D, 26, 1817 (1982).

    Article  ADS  Google Scholar 

  43. S. M. Barnett and P. M. Badmore, Methods in Theoretical Quantum Optics, Oxford University Press, New York (1997).

    Google Scholar 

  44. S. Tesfa, Phys. Rev. A, 83, 023809 (2011).

    Article  ADS  Google Scholar 

  45. S. Tesfa, Quantum Optical Processes: From Basics to Applications, Springer Nature, USA (2020).

    Book  Google Scholar 

  46. W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York (1973).

    MATH  Google Scholar 

  47. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1997).

    Book  Google Scholar 

  48. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett., 84, 2722 (2000).

    Article  ADS  Google Scholar 

  49. O. Jeff, Quantum Optics for Experimentalists, World Scientific, USA (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chimdessa Gashu Feyisa.

Additional information

†This manuscript was submitted as a regular paper but the Editorial Board of Journal of Russian Laser Research decided to publish it in this Special issue dedicated to the memory of Dr. Vladimir A. Andreev, since the manuscript contains interesting results related to Andreev’s scientific activity; this fact was also pointed out by referees, who are simultaneously the authors of this issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyisa, C.G., Mosisa, E., Tuguma, A. et al. Nonclassical Features of Intra-Cavity and Transmitted Fields in a Coherently-Pumped Correlated-Emission Laser with Injected Thermal Light. J Russ Laser Res 43, 104–123 (2022). https://doi.org/10.1007/s10946-022-10028-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10028-3

Keywords

Navigation