Skip to main content
Log in

Dynamics of a Nonlinear Quantum Oscillator Under Non-Markovian Pumping

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We consider dynamics of a quantum nonlinear oscillator subjected to non-Markovian pumping. Models of this kind can describe formation of exciton-polariton Bose–Einstein condensates in course of stimulated scattering and relaxation of reservoir excitons. Using the Markovian embedding techniques, we obtain stochastic differential equations of motion with an additional degree of freedom corresponding to dynamical memory. We show that the oscillator asymptotically tends to the intrinsically non-Markovian stable fixed point corresponding to constant product of oscillator amplitude and modulo of the memory variable. The state corresponding to this point exhibits unlimited growth of population, with the growth rate that decreases with time. Our results show that the Markovian behavior could be observed only within some limited early stage of the oscillator evolution provided that decay of dynamical memory is sufficiently fast. Transition from the Markovian regime to non-Markovian one with increasing time is linked to the phase shift of the pumping term. We study the coherence properties of the oscillator and find that interaction between particles delimits growth of the condensate population, thereby impeding formation of the Bose–Einstein condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Cockburn and N. P. Proukakis, Laser Phys., 19, 558 (2009).

    Article  ADS  Google Scholar 

  2. V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 78, 043413 (2008).

    Article  ADS  Google Scholar 

  3. V. Yu. Argonov and S. V. Prants, JETP Lett., 88, 655 (2008).

    Article  ADS  Google Scholar 

  4. S. V. Prants and L. E. Kon’kov, J. Russ. Laser Res., 36, 211 (2015).

    Article  Google Scholar 

  5. A. A. Bychek, P. S. Muraev, D. N. Maksimov, and A. R. Kolovsky, Phys. Rev. E, 101, 012208 (2020).

    Article  MathSciNet  ADS  Google Scholar 

  6. A. A. Zhukov, E. O. Kiktenko, A. A. Elistratov, et al., Quantum Inform. Proc., 18, 31 (2019).

    Article  ADS  Google Scholar 

  7. H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys., 82, 1489 (2010).

    Article  ADS  Google Scholar 

  8. I. Carusotto and C. Ciuti, Rev. Mod. Phys., 85, 299 (2013).

    Article  ADS  Google Scholar 

  9. L. Amico, G. Birkl, M. Boshier, and L.-C. Kwek, New J. Phys., 19, 020201 (2017).

    Article  ADS  Google Scholar 

  10. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2002).

  11. J. J. Hope, Phys. Rev. A, 55, R2531 (1997).

    Article  ADS  Google Scholar 

  12. I. de Vega, D. Porras, and J. I. Cirac, Phys. Rev. Lett., 101, 260404 (2008).

    Article  Google Scholar 

  13. C. Navarette-Benloch, I. de Vega, D. Porras, and J. I. Cirac, New J. Phys., 13, 023024 (2011).

    Article  ADS  Google Scholar 

  14. L. Krinner, M. Stewart, A. Pazmino, et al., Nature, 559, 589 (2018).

    Article  ADS  Google Scholar 

  15. A. Recati, P. O. Fedichev, W. Zwerger, et al., Phys. Rev. Lett., 94, 040404 (2005).

    Article  ADS  Google Scholar 

  16. D. Sokolovski and S. A. Gurvitz, Phys. Rev. A, 79, 032106 (2009).

    Article  ADS  Google Scholar 

  17. D. Hunger, S. Camerer, T. W. Hänsch, et al., Phys. Rev. Lett., 104, 143002 (2010).

    Article  ADS  Google Scholar 

  18. T. J. G. Apollaro, C. Di Franco, F. Plastina, and M. Paternostro, Phys. Rev. A, 83, 032103 (2011).

    Article  ADS  Google Scholar 

  19. A. Lampo, C. Charalambous, M. A. Carćia-March, and M. Lewenstein, Phys. Rev. A, 98, 063630 (2018).

    Article  ADS  Google Scholar 

  20. D. K. Efimkin, J. Hofmann, and V. Galitski, Phys. Rev. Lett., 91, 023616 (2015).

    Google Scholar 

  21. N. V. Prokof’ev and P. C. E. Stamp, Rep. Progr. Phys., 63, 669 (2000).

    Article  ADS  Google Scholar 

  22. L. Diósi and W. T. Strunz, Phys. Lett. A, 235, 569 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  23. W. T. Strunz, L. Diósi, and N. Gisin, Phys. Rev. Lett., 82, 1801 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Yu, L. Diósi, N. Gisin, and W. T. Strunz, Phys. Rev. A, 60, 91 (1999).

    Article  ADS  Google Scholar 

  25. G. G. Adamian, N. V. Antonenko, Z. Kanokov, and V. V. Sargsyan, Theor. Math. Phys., 145, 14438 (2005).

    Article  Google Scholar 

  26. A. Chakraborty and R. Sensarma, Phys. Rev. B, 97, 104306 (2018).

    Article  ADS  Google Scholar 

  27. M. Schiro and O. Scarlatella, J. Chem. Phys., 151, 044102 (2019).

    Article  ADS  Google Scholar 

  28. P. Ribeiro and V. R. Vieira, Phys. Rev. B, 92, 100302 (2015).

    Article  ADS  Google Scholar 

  29. H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Rev. Mod. Phys., 88, 021002 (2016).

    Article  ADS  Google Scholar 

  30. I. de Vega and D. Alonso, Rev. Mod. Phys., 89, 015001 (2017).

    Article  ADS  Google Scholar 

  31. A. A. Elistratov and Yu. E. Lozovik, Phys. Rev. B, 93, 014525 (2018).

    Article  ADS  Google Scholar 

  32. D. V. Makarov, A. A. Elistratov, and Yu. E. Lozovik, Phys. Lett. A, 384, 126942 (2020).

    Article  MathSciNet  Google Scholar 

  33. S. Kim, B. Zhang, Z. Wang, et al., Phys. Rev. X, 6, 011026 (2016).

    Google Scholar 

  34. S. Ronen, J. L. Bohn, L. E. Halmo, and M. Edwards, Phys. Rev. A, 78, 053613 (2008).

    Article  ADS  Google Scholar 

  35. A. R. Kolovsky, E. A. Gómez, and H-J. Korsch, Phys. Rev. A, 81, 025603 (2010).

    Article  ADS  Google Scholar 

  36. S. Iubini, S. Lepri, R. Livi, and A. Politi, J. Stat. Mech., 2013, P08017 (2013).

    Article  Google Scholar 

  37. M. Yu. Uleysky and D. V. Makarov, J. Russ. Laser Res., 35, 138 (2014).

    Article  Google Scholar 

  38. D. V. Makarov and M. Yu. Uleysky, Commun. Nonlin. Sci. Numer. Simul., 43, 227 (2017).

    Article  Google Scholar 

  39. A. Richaud and V. Penna, New. J. Phys., 20, 105008 (2018).

    Article  ADS  Google Scholar 

  40. A. A. Didov, L. E. Kon’kov, and D. V. Makarov, Eur. Phys. J. B, 93, 13 (2020).

    Article  ADS  Google Scholar 

  41. S. Iubini and A. Politi, Chaos Solitons Fractals, 147, 110954 (2021).

    Article  Google Scholar 

  42. E. S. Fraga, G. Krein, and L. Palhares, Physica A, 393, 155 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  43. A. A. Selivanov, J. Lehnert, T. Dahms, et al., Phys. Rev. E, 85, 016201 (2012)

    Article  ADS  Google Scholar 

  44. K. Höhlein, F. P. Kemeth, and K. Krischer, Phys. Rev. E, 100, 022217 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  45. F. P. Kemeth, S. W. Haugland, and K. Krischer, Chaos, 29, 023107 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  46. H. Bi, X. Hu, X. Zhang, et al., Eur. Phys. Lett., 108, 50003 (2014)

    Article  ADS  Google Scholar 

  47. M. Arató, S. Baran, and M. Ispány, Comput. Math. Appl., 37, 1 (1999).

    MathSciNet  Google Scholar 

  48. D. V. Makarov and L. E. Kon’kov, Phys. Lett. A, 377, 3093 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  49. D. V. Makarov and L. E. Kon’kov, Eur. Phys. J. B, 87, 281 (2014).

    Article  ADS  Google Scholar 

  50. D. V. Makarov and L. E. Kon’kov, Phys. Scr., 90, 035204 (2015).

    Article  ADS  Google Scholar 

  51. V. Yu. Argonov and D. V. Makarov, J. Phys. B: At. Mol. Opt. Phys., 49, 175503 (2016).

    Article  ADS  Google Scholar 

  52. D. V. Makarov, Quantum Electron., 47, 451 (2017).

    Article  ADS  Google Scholar 

  53. X. Li, Phys. Lett. A, 387, 127036 (2021).

    Article  Google Scholar 

  54. A. Neiman and W. Sung, Phys. Lett. A, 223, 341 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  55. S. S. Gavrilov, Phys. Usp., 63, 123 (2020).

    Article  ADS  Google Scholar 

  56. A. R. Kolovsky, “Bistability in the dissipative quantum systems I: Damped and driven nonlinear oscillator,” arXiv:2002.11373[quant-ph] (2020).

  57. P. Schwendimann and A. Quattropani, Phys. Rev. B, 77, 085317 (2008).

    Article  ADS  Google Scholar 

  58. D. M. Whittaker and P. R. Eastham, Eur. Phys. Lett., 87, 27002 (2009).

    Article  ADS  Google Scholar 

  59. R. Kubo, Adv. Chem. Phys., 15, 101, (1969).

    Google Scholar 

  60. G. Zaslavsky, R. Sagdeev, D. Usikov, and A. Chernikov, Weak Chaos and Quasi-Regular Patterns, Cambridge University Press (1991).

  61. C. Nicolis and G. Nicolis, Physica D, 155, 184 (2001).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis V. Makarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alliluev, A.D., Makarov, D.V. Dynamics of a Nonlinear Quantum Oscillator Under Non-Markovian Pumping. J Russ Laser Res 43, 71–81 (2022). https://doi.org/10.1007/s10946-022-10024-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10024-7

Keywords

Navigation