Skip to main content
Log in

Against Identification of Contextuality with Violation of the Bell Inequalities: Lessons from Theory of Randomness

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Nowadays, contextuality is the hottest topic of quantum foundations and, especially, foundations of quantum information theory. This notion is characterized by the huge diversity of approaches and interpretations. One of the strongest trends in contextual research is to identify contextuality with Bell test contextuality (BTC). In this paper, we criticize the BTC approach. It can be compared with an attempt to identify the complex and theoretically nontrivial notion of randomness with a test for randomness (or a batch of tests, as the NIST test). We advertise Bohr contextuality taking into account all experimental conditions (context). In the simplest case, the measurement context of an observable A is reduced to joint measurement with a compatible observable B. The latter definition was originally considered by Bell in relation to his inequality. We call it joint measurement contextuality (JMC). Although JMC is based on the use of counterfactuals, by considering it within the general Bohr’s framework, it is possible to handle JMC on physical grounds. We suggest (similarly to randomness) to certify JMC in experimental data with Bell tests, but only certify and not reduce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Bell, Rev. Mod. Phys., 38, 450 (1966).

    Article  ADS  Google Scholar 

  2. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, 2nd ed., Cambridge University Press (2004).

    Book  MATH  Google Scholar 

  3. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett., 23, 880 (1969).

    Article  ADS  Google Scholar 

  4. A. Khrennikov, Entropy, 21, 806 (2019).

    Article  ADS  Google Scholar 

  5. A. Khrennikov, Entropy, 22, 303 (2020).

    Article  ADS  Google Scholar 

  6. A. Khrennikov, Open Phys., 15, 734 (2017).

    Article  Google Scholar 

  7. A. Cabello, S. Severini, and A. Winter, (Non-)contextuality of physical theories as an axiom. ???

  8. M. Araujo, M. T. Quintino, C. Budroni, et al., Phys. Rev. A, 88, 022118 (2013).

    Article  ADS  Google Scholar 

  9. E. N. Dzhafarov and J. V. Kujala, “Probabilistic contextuality in EPR/Bohm-type systems with signaling allowed,” in: Contextuality from Quantum Physics to Psychology, WSP, Singapore (2015), p. 287.

    Google Scholar 

  10. E. N. Dzhafarov and J. V. Kujala, J. Math. Psych., 74, 11 (2016).

    Article  MathSciNet  Google Scholar 

  11. A. Khrennikov, Int. J. Quantum Inf., 14, 1640009 (2016).

    Article  MathSciNet  Google Scholar 

  12. A. Khrennikov, Probability and Randomness: Quantum versus Classical, Imperial College Press, London (2016).

    Book  MATH  Google Scholar 

  13. A. Yu. Khrennikov, Interpretations of Probability, VSP Int. Sci. Publishers, Utrecht/Tokyo (1999); 2nd ed., De Gruyter, Berlin (2009).

  14. A. Khrennikov, Phys. Lett. A, 278, 307 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Khrennikov, J. Math. Phys., 44, 2471 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Khrennikov, Europhys. Lett., 69, 678 (2005).

    Article  ADS  Google Scholar 

  17. A. Khrennikov, Found. Phys., 35, 1655 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Khrennikov, Entropy, 10, 19 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Khrennikov, Contextual Approach to Quantum Formalism, Springer, Berlin/Heidelberg, Germany; New York, NY, USA (2009).

    Book  Google Scholar 

  20. A. Khrennikov, Open Syst. Inf. Dyn., 23, 1650008 (2016).

    Article  MathSciNet  Google Scholar 

  21. A. Khrennikov, “Formalization of Bohr’s contextuality within theory of open quantum systems,” arXiv:2102.09184 [quant-ph].

  22. N. Bohr, The Philosophical Writings of Niels Bohr, Ox Bow Press, Woodbridge, UK (1987).

    Google Scholar 

  23. A. Plotnitsky, Epistemology and Probability: Bohr, Heisenberg, Schr¨odinger and the Nature of Quantum-Theoretical Thinking, Springer, Berlin, Germany; New York, NY, USA (2009).

    Google Scholar 

  24. A. Plotnitsky, Niels Bohr and Complementarity: An Introduction, Springer, Berlin, Germany; New York, NY, USA (2012).

    Book  MATH  Google Scholar 

  25. K. Svozil, “Varieties of contextuality based on complexion, quantum probabilities, and structural nonembeddability,” arXiv.org/abs/2103.06110.

  26. A. Shimony, “Hidden-variable models of quantum mechanics (Noncontextual and contextual),” in: Compendium of Quantum Physics, Springer, Berlin/Heidelberg, Germary (2009), pp. 287–291.

  27. A. Shimony, “Experimental test of local hidden variable theories,” in: Foundations of Quantum Mechanics, Academic, New York, NY, USA (1971).

  28. E. G. Beltrametti and C. Cassinelli, SIAM, 25, 429 (1983).

    Article  Google Scholar 

  29. K. Svozil, Phys. Rev. A, 80, 04010 (2009).

    Article  Google Scholar 

  30. R. B. Griffiths, “Quantum nonlocality: Myth and reality,” arXiv:1901.07050.

  31. A. Khrennikov, “Bell argument: Locality or realism? Time to make the choice,” AIP Conf. Proc., 1424, 160 (2012).

    Article  ADS  MATH  Google Scholar 

  32. A. Khrennikov, “Echoing the recent Google success: Foundational roots of quantum supremacy,” arXiv:1911.10337 [quant-ph].

  33. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, NJ, USA (1955).

    MATH  Google Scholar 

  34. A. Khrennikov, Ubiquitous Quantum Structure: from Psychology to Finances, Springer, Berlin-Heidelberg-New York (2010).

    Book  MATH  Google Scholar 

  35. J. Busemeyer and P. Bruza, Quantum Models of Cognition and Decision, Cambridge University Press (2012).

    Book  Google Scholar 

  36. E. Haven and A. Khrennikov, (2013). Quantum Social Science, Cambridge University Press (2013).

    Google Scholar 

  37. M. Asano, A. Khrennikov, M. Ohya, et al., Quantum Adaptivity in Biology: from Genetics to Cognition, Springer, Heidelberg-Berlin-New York (2015).

    MATH  Google Scholar 

  38. G. Adenier and A. Khrennikov, J. Phys. B: At. Mol. Opt., 40, 131 (2007).

    Article  ADS  Google Scholar 

  39. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 49, 1804 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Aspect, Three Experimental Tests of Bell Inequalities by the Measurement of Polarization Correlations between Photons, Orsay, Paris, France (1983).

    Google Scholar 

  41. G. Weihs, T. Jennewein, C. Simon, et al., Phys. Rev. Lett., 81, 5039 (1988).

    Article  ADS  Google Scholar 

  42. B. Hensen, H. Bernien, A. Dréau, et al., Nature, 5, 682 (2015).

  43. G. Adenier and A. Y. Khrennikov, Fortschritte der Physik, 65, 1600096 (2016).

    Article  ADS  Google Scholar 

  44. E. N. Dzhafarov and J. V. Kujala, “Probabilistic contextuality in EPR/Bohm-type systems with signaling allowed,” in: Contextuality from Quantum Physics to Psychology, WSP, Singapore (2015), p. 287.

  45. A. Khrennikov and A. Alodjants, Entropy, 21, 157 (2019).

    Article  ADS  Google Scholar 

  46. A. N. Kolmolgoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin (1933).

    Book  Google Scholar 

  47. A. Fine, Phys. Rev. Lett., 48, 291 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Fine, J. Math. Phys., 23, 1306 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  49. P. Suppes aud M. Zanotti, Synthese, 48, 191 (1981).

  50. R. von Mises, Math. Z., 5, 52 (1919).

    Article  MathSciNet  Google Scholar 

  51. R. von Mises, Probability, Statistics and Truth, Macmillan, London (1957).

    MATH  Google Scholar 

  52. R. von Mises, The Mathematical Theory of Probability and Statistics, Academic, London (1964).

    MATH  Google Scholar 

  53. A. Khrennikov and I. Basieva, Entropy, 20, 280 (2018).

    Article  ADS  Google Scholar 

  54. E. R. Loubenets and A. Y. Khrennikov, J. Phys. A: Math. Theor., 52, 435304 (2019).

    Article  ADS  Google Scholar 

  55. M. Giustina, M. A. Versteegh, S. Wengerowsky, et al., Phys. Rev. Lett., 1, 250401 (2015).

    Article  Google Scholar 

  56. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, et al., Phys. Rev. Lett., 115, 250402 (2015).

    Article  ADS  Google Scholar 

  57. A. Khrennikov, S. Ramelow, R. Ursin, et al., Phys. Scr., 2014 ???, 014019 (2014).

  58. V. Andreev, Acta Physica Hungarica B: Quantum Electron., 26, 213 (2006).

  59. V. A. Andreev, V. I. Man’ko, O. V. Man’ko, and E. V. Shchukin, Theor. Math. Phys., 146, 140 (2006).

  60. V. A. Andreev, Theor. Math. Phys., 152, 1286 (2007).

    Article  Google Scholar 

  61. V. A. Andreev, Theor. Math. Phys., 158, 196 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrennikov, A. Against Identification of Contextuality with Violation of the Bell Inequalities: Lessons from Theory of Randomness. J Russ Laser Res 43, 48–59 (2022). https://doi.org/10.1007/s10946-022-10022-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10022-9

Keywords

Navigation