Skip to main content
Log in

Time Evolution of Quantum Coherence of Two Bosonic Modes in Noisy Environments

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Using the axiomatic formalism based on completely positive quantum dynamical semigroups, we describe the dynamics of quantum coherence of an open system consisting of two bosonic modes, each one embedded in a noisy environment. The influence of the environment is discussed in the covariance matrix formalism for initial squeezed thermal states and for an asymptotic covariance matrix determined only by the environment. The quantum coherence is quantified by means of the relative entropy of coherence. We show that the evolution of the quantum coherence strongly depends on the initial state of the system (squeezing parameter), the parameters characterizing the environments (squeezing parameters, squeezing phases, and temperatures), and the overall damping rate. Depending on the value of the parameters, the asymptotic quantum coherence can have nonzero values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2009).

    Article  ADS  Google Scholar 

  2. L. Henderson and V. Vedral, J. Phys. A: Math. Gen., 34, 6899 (2001).

    Article  ADS  Google Scholar 

  3. V. Vedral, Phys. Rev. Lett., 90, 050401 (2003).

    Article  ADS  Google Scholar 

  4. H. Ollivier and W. H. Zurek, Phys. Rev. Lett., 88, 017901 (2001).

    Article  ADS  Google Scholar 

  5. M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science, 299, 862 (2003).

    Article  ADS  Google Scholar 

  6. M. O. Scully, K. R. Chapin, K. E. Dorfman, et al., Proc. Nat. Acad. Sci., 108, 15097 (2011).

    Article  ADS  Google Scholar 

  7. T. D. Ladd, F. Jelezko, R. Laflamme, et. al., Nature, 464, 45 (2010).

  8. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, et al., Rev. Mod. Phys., 81, 1301 (2009).

    Article  ADS  Google Scholar 

  9. V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photon., 5, 222 (2011).

    Article  ADS  Google Scholar 

  10. G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor., 47, 424006 (2014).

  11. B. C, akmak, G. Karpat, and F. F. Fanchini, Entropy, 17, 790 (2015).

  12. A. L. Malvezzi, G. Karpat, B. C, akmak, et al., Phys. Rev. B, 93, 184428 (2016).

  13. A. D. Ludlow, M. M. Boyd, J. Ye, et al., Rev. Mod. Phys., 87, 637 (2015).

    Article  ADS  Google Scholar 

  14. S. Lloyd, J. Phys.: Conf. Ser., 302, 012037 (2011).

    Google Scholar 

  15. G. S. Engel, T. R. Calhoun, E. L. Read, et al., Nature, 446, 782 (2007).

    Article  ADS  Google Scholar 

  16. J. Aberg, “Quantifying superposition,” ArXiv quant-ph/0612146 (2006).

  17. T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett., 113, 140401 (2014).

    Article  ADS  Google Scholar 

  18. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett., 78, 2275 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  19. V. Vedral and M. B. Plenio, Phys. Rev. A, 57, 3, 1619 (1998).

    Article  ADS  Google Scholar 

  20. A. Streltsov, U. Singh, H. S. Dhar, et al., Phys. Rev. Lett., 115, 020403 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  21. K. C. Tan and H. Jeong, Phys. Rev. Lett., 121, 220401 (2018).

    Article  ADS  Google Scholar 

  22. M. L. Hu, X. Hu, J. Wang, et al., Phys. Rep., 762, 1 (2018).

    ADS  MathSciNet  Google Scholar 

  23. X. Yuan, H. Zhou, M. Gu, and X. F. Ma, “Unified framework for quantumness – coherence, discord, and entanglement,” ArXiv quant-ph/1706.04853 (2017).

  24. N. Killoran, F. E. S. Steinhoff, and M. B. Plenio, Phys. Rev. Lett., 116, 080402 (2016).

    Article  ADS  Google Scholar 

  25. V. A. Andreev, M. A. Man’ko, and V. I. Man’ko, Phys. Lett. A, 384, 126349 (2020).

  26. P. Adam, V. A. Andreev, M. A. Man’ko, et al., J. Russ. Laser Res., 41, 470 (2020).

  27. P. Adam, V. A. Andreev, M. A. Man’ko, et al., Symmetry, 13, 131 (2021).

    Article  Google Scholar 

  28. J. Xu, Phys. Rev. A, 93, 032111 (2016).

    Article  ADS  Google Scholar 

  29. A. Isar, A. Sandulescu, H. Scutaru, et al., Int. J. Mod. Phys. E, 3, 635 (1994).

    Article  ADS  Google Scholar 

  30. A. Isar, Phys. Scr. T, 140, 014023 (2010).

    Article  ADS  Google Scholar 

  31. A. Isar, J. Russ. Laser Res., 31, 182 (2010).

    Article  Google Scholar 

  32. A. Isar, Phys. Scr. T, 143, 014012 (2011).

    Article  ADS  Google Scholar 

  33. A. Isar, J. Russ. Laser Res., 35, 62 (2014).

    Article  Google Scholar 

  34. A. Isar, Phys. Scr. T, 160, 014019 (2014).

    Article  ADS  Google Scholar 

  35. T. Mihaescu and A. Isar, Rom. J. Phys., 60, 853 (2015).

    Google Scholar 

  36. A. Isar, Open Syst. Inf. Dyn., 23, 1650007 (2016).

    Article  MathSciNet  Google Scholar 

  37. A. Isar and T. Mihaescu, Eur. Phys. J. D, 71, 144 (2017).

    Article  ADS  Google Scholar 

  38. A. Isar, Rom. J. Phys., 63, 108 (2018).

    Google Scholar 

  39. T. Mihaescu and A. Isar, Eur. Phys. J. D, 72, 1 (2018).

    Article  Google Scholar 

  40. A. Dobre and A. Isar, Rom. J. Phys., 65, 9 (2020).

    Google Scholar 

  41. M. Calamanciuc and A. Isar, Rom. J. Phys., 65, 119 (2020).

    Google Scholar 

  42. M. Cuzminschi and A. Isar, Rom. Rep. Phys., 73, 110 (2021).

    Google Scholar 

  43. S. Suciu and A. Isar, Rom. J. Phys. 61, 1474 (2016).

    Google Scholar 

  44. A. Croitoru, I. Ghiu, and A. Isar, Rom. Rep. Phys., 72, 1 (2020).

    Google Scholar 

  45. A. Sandulescu, H. Scutaru, and W. Scheid, J. Phys. A: Math. Gen., 20, 2121 (1987).

    Article  ADS  Google Scholar 

  46. G. Lindblad, Commun. Math. Phys., 48, 119 (1976).

    Article  ADS  Google Scholar 

  47. D. Buono, G. Nocerino, V. D’Auria, et al., J. Opt. Soc. Am. B, 27, A110 (2010).

    Article  Google Scholar 

  48. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys., 17, 821 (1976).

    Article  ADS  Google Scholar 

  49. G. Adesso, S. Ragy, and A. R. Lee, Open Syst. Inf. Dyn., 21, 1440001 (2014).

    Article  MathSciNet  Google Scholar 

  50. P. Marian, T. A. Marian, and H. Scutaru, Phys. Rev. A, 68, 062309 (2003).

    Article  ADS  Google Scholar 

  51. C. E. Shannon, Bell Sys. Tech. J., 27, 379 (1948).

    Article  Google Scholar 

  52. A. S. Holevo, M. Sohma, and O. Hirota, Phys. Rev. A, 59, 1820 (1999).

    Article  ADS  Google Scholar 

  53. C. Weedbrook, S. Pirandola, R. García-Patrón, et al., Rev. Mod. Phys., 84, 621 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelian Isar.

Additional information

We pay a pious tribute to Dr. Vladimir Andreevich Andreev, the outstanding scientist and friend and dedicate this article to his memory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croitoru, A., Isar, A. Time Evolution of Quantum Coherence of Two Bosonic Modes in Noisy Environments. J Russ Laser Res 43, 39–47 (2022). https://doi.org/10.1007/s10946-022-10021-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10021-w

Keywords

Navigation